Do you want to publish a course? Click here

Supersymmetry with Light Dark Matter confronting the recent CDMS and LHC Results

122   0   0.0 ( 0 )
 Added by Marco Battaglia
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit MSSM scenarios with light neutralino as a dark matter candidate in view of the latest LHC and dark matter direct and indirect detection experiments. We show that scenarios with a very light neutralino (~ 10 GeV) and a scalar bottom quark close in mass, can satisfy all the available constraints from LEP, Tevatron, LHC, flavour and low energy experiments and provide solutions in agreement with the bulk of dark matter direct detection experiments, and in particular with the recent CDMS results.



rate research

Read More

We study a simple extension of the Standard Model supplemented by an electroweak triplet scalar field to accommodate small neutrino masses by the type-II seesaw mechanism, while an additional singlet scalar field can play the role of cold dark matter (DM) in our Universe. This DM candidate is leptophilic for a wide range of model parameter space, and the lepton flux due to its annihilation carries information about the neutrino mass hierarchy. Using the recently released high precision data on positron fraction and flux from the AMS-02 experiment, we examine the DM interpretation of the observed positron excess in our model for two kinematically distinct scenarios with the DM and triplet scalar masses (a) non-degenerate ($m_{rm DM}gg m_{Delta}$), and (b) quasi-degenerate ($m_{rm DM} simeq m_Delta$). We find that a good fit to the AMS-02 data can be obtained in both cases (a) and (b) with a normal hierarchy of neutrino masses, while the inverted hierarchy case is somewhat disfavored. Although we require a larger boost factor for the normal hierarchy case, this is still consistent with the current upper limits derived from Fermi-LAT and IceCube data for case (a). Moreover, the absence of an excess anti-proton flux as suggested by PAMELA data sets an indirect upper limit on the DM-nucleon spin-independent elastic scattering cross section which is stronger than the existing DM direct detection bound from LUX in the AMS-02 preferred DM mass range.
The Fermi Large Area Telescope observed an excess in gamma ray emission spectrum coming from the center of the Milky Way galaxy. This data reveals that a light Dark Matter (DM) candidate of mass in the range 31-40 GeV, dominantly decaying into $bbar b$ final state, can explain the presence of the observed bump in photon energy. We try to interpret this observed phenomena by sneutrino DM annihilation into pair of fermions in the Supersymmetric Inverse Seesaw Model (SISM). This model can also account for tiny non-zero neutrino masses satisfying existing neutrino oscillation data. We show that a Higgs portal DM in this model is in perfect agreement with this new interpretation besides satisfying all other existing collider, cosmological and low energy experimental constraints.
We report results of a search for Weakly Interacting Massive Particles (WIMPS) with the silicon detectors of the CDMS II experiment. This blind analysis of 140.2 kg-days of data taken between July 2007 and September 2008 revealed three WIMP-candidate events with a surface-event background estimate of 0.41^{+0.20}_{-0.08}(stat.)^{+0.28}_{-0.24}(syst.). Other known backgrounds from neutrons and 206Pb are limited to < 0.13 and <0.08 events at the 90% confidence level, respectively. The exposure of this analysis is equivalent to 23.4 kg-days for a recoil energy range of 7-100 keV for a WIMP of mass 10 GeV/c2. The probability that the known backgrounds would produce three or more events in the signal region is 5.4%. A profile likelihood ratio test of the three events that includes the measured recoil energies gives a 0.19% probability for the known-background-only hypothesis when tested against the alternative WIMP+background hypothesis. The highest likelihood occurs for a WIMP mass of 8.6 GeV/c2 and WIMP-nucleon cross section of 1.9e-41 cm2.
459 - D.I. Kazakov 2010
Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation. Search for SUSY is one of the main aims of the recently launched Large Hadron Collider. The other possible manifestation of SUSY is the Dark Matter in the Universe. The present lectures contain a brief introduction to supersymmetry in particle physics. The main notions of supersymmetry are introduced. The supersymmetric extension of the Standard Model - the Minimal Supersymmetric Standard Model - is considered in more detail. Phenomenological features of the MSSM as well as possible experimental signatures of SUSY at the LHC are described. The DM problem and its possible SUSY solution is presented.
230 - Yuchao Gu , Maxim Khlopov , Lei Wu 2020
The recent measurements of the cosmological parameter $H_0$ from the direct local observations and the inferred value from the Cosmic Microwave Background show $sim 4 sigma$ discrepancy. This may indicate new physics beyond the standard $Lambda$CDM. We investigate the keV gravitino dark matter that has a small fraction of non-thermal component (e.g. from the late decay of NLSP bino) under various cosmological constraints. We find such a scenario is highly predictive and can be tested by searching for the dilepton plus missing energy events at the LHC. Besides, we also discuss its implication for Hubble tension, however, which can be reduced to $3sigma$ level marginally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا