No Arabic abstract
The statistical analysis of Randomized Numerical Linear Algebra (RandNLA) algorithms within the past few years has mostly focused on their performance as point estimators. However, this is insufficient for conducting statistical inference, e.g., constructing confidence intervals and hypothesis testing, since the distribution of the estimator is lacking. In this article, we develop an asymptotic analysis to derive the distribution of RandNLA sampling estimators for the least-squares problem. In particular, we derive the asymptotic distribution of a general sampling estimator with arbitrary sampling probabilities. The analysis is conducted in two complementary settings, i.e., when the objective of interest is to approximate the full sample estimator or is to infer the underlying ground truth model parameters. For each setting, we show that the sampling estimator is asymptotically normally distributed under mild regularity conditions. Moreover, the sampling estimator is asymptotically unbiased in both settings. Based on our asymptotic analysis, we use two criteria, the Asymptotic Mean Squared Error (AMSE) and the Expected Asymptotic Mean Squared Error (EAMSE), to identify optimal sampling probabilities. Several of these optimal sampling probability distributions are new to the literature, e.g., the root leverage sampling estimator and the predictor length sampling estimator. Our theoretical results clarify the role of leverage in the sampling process, and our empirical results demonstrate improvements over existing methods.
In this paper, we consider the usual linear regression model in the case where the error process is assumed strictly stationary. We use a result from Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and on the error process. We show that for a large class of designs, the asymptotic covariance matrix is as simple as the independent and identically distributed case. We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.
We propose a novel probabilistic method for detection of objects in noisy images. The method uses results from percolation and random graph theories. We present an algorithm that allows to detect objects of unknown shapes in the presence of random noise. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove results on consistency and algorithmic complexity of our procedure.
Neural networks are one of the most popularly used methods in machine learning and artificial intelligence nowadays. Due to the universal approximation theorem (Hornik et al. (1989)), a neural network with one hidden layer can approximate any continuous function on a compact support as long as the number of hidden units is sufficiently large. Statistically, a neural network can be classified into a nonlinear regression framework. However, if we consider it parametrically, due to the unidentifiability of the parameters, it is difficult to derive its asymptotic properties. Instead, we considered the estimation problem in a nonparametric regression framework and use the results from sieve estimation to establish the consistency, the rates of convergence and the asymptotic normality of the neural network estimators. We also illustrate the validity of the theories via simulations.
We derive asymptotic normality of kernel type deconvolution estimators of the density, the distribution function at a fixed point, and of the probability of an interval. We consider the so called super smooth case where the characteristic function of the known distribution decreases exponentially. It turns out that the limit behavior of the pointwise estimators of the density and distribution function is relatively straightforward while the asymptotics of the estimator of the probability of an interval depends in a complicated way on the sequence of bandwidths.
The classical asymptotic theory for parametric $M$-estimators guarantees that, in the limit of infinite sample size, the excess risk has a chi-square type distribution, even in the misspecified case. We demonstrate how self-concordance of the loss allows to characterize the critical sample size sufficient to guarantee a chi-square type in-probability bound for the excess risk. Specifically, we consider two classes of losses: (i) self-concordant losses in the classical sense of Nesterov and Nemirovski, i.e., whose third derivative is uniformly bounded with the $3/2$ power of the second derivative; (ii) pseudo self-concordant losses, for which the power is removed. These classes contain losses corresponding to several generalized linear models, including the logistic loss and pseudo-Huber losses. Our basic result under minimal assumptions bounds the critical sample size by $O(d cdot d_{text{eff}}),$ where $d$ the parameter dimension and $d_{text{eff}}$ the effective dimension that accounts for model misspecification. In contrast to the existing results, we only impose local assumptions that concern the population risk minimizer $theta_*$. Namely, we assume that the calibrated design, i.e., design scaled by the square root of the second derivative of the loss, is subgaussian at $theta_*$. Besides, for type-ii losses we require boundedness of a certain measure of curvature of the population risk at $theta_*$.Our improved result bounds the critical sample size from above as $O(max{d_{text{eff}}, d log d})$ under slightly stronger assumptions. Namely, the local assumptions must hold in the neighborhood of $theta_*$ given by the Dikin ellipsoid of the population risk. Interestingly, we find that, for logistic regression with Gaussian design, there is no actual restriction of conditions: the subgaussian parameter and curvature measure remain near-constant over the Dikin ellipsoid. Finally, we extend some of these results to $ell_1$-penalized estimators in high dimensions.