Do you want to publish a course? Click here

Asymptotic normality of kernel type deconvolution estimators

80   0   0.0 ( 0 )
 Added by A. J. van Es
 Publication date 2001
and research's language is English




Ask ChatGPT about the research

We derive asymptotic normality of kernel type deconvolution estimators of the density, the distribution function at a fixed point, and of the probability of an interval. We consider the so called super smooth case where the characteristic function of the known distribution decreases exponentially. It turns out that the limit behavior of the pointwise estimators of the density and distribution function is relatively straightforward while the asymptotics of the estimator of the probability of an interval depends in a complicated way on the sequence of bandwidths.



rate research

Read More

97 - A.J. van Es , H.-W. Uh 2002
We derive asymptotic normality of kernel type deconvolution density estimators. In particular we consider deconvolution problems where the known component of the convolution has a symmetric lambda-stable distribution, 0<lambda<= 2. It turns out that the limit behavior changes if the exponent parameter lambda passes the value one, the case of Cauchy deconvolution.
362 - Jiexiang Li 2014
The paper discusses the estimation of a continuous density function of the target random field $X_{bf{i}}$, $bf{i}in mathbb {Z}^N$ which is contaminated by measurement errors. In particular, the observed random field $Y_{bf{i}}$, $bf{i}in mathbb {Z}^N$ is such that $Y_{bf{i}}=X_{bf{i}}+epsilon_{bf{i}}$, where the random error $epsilon_{bf{i}}$ is from a known distribution and independent of the target random field. Compared to the existing results, the paper is improved in two directions. First, the random vectors in contrast to univariate random variables are investigated. Second, a random field with a certain spatial interactions instead of i. i. d. random variables is studied. Asymptotic normality of the proposed estimator is established under appropriate conditions.
133 - Salim Bouzebda 2011
We establish uniform-in-bandwidth consistency for kernel-type estimators of the differential entropy. We consider two kernel-type estimators of Shannons entropy. As a consequence, an asymptotic 100% confidence interval of entropy is provided.
Neural networks are one of the most popularly used methods in machine learning and artificial intelligence nowadays. Due to the universal approximation theorem (Hornik et al. (1989)), a neural network with one hidden layer can approximate any continuous function on a compact support as long as the number of hidden units is sufficiently large. Statistically, a neural network can be classified into a nonlinear regression framework. However, if we consider it parametrically, due to the unidentifiability of the parameters, it is difficult to derive its asymptotic properties. Instead, we considered the estimation problem in a nonparametric regression framework and use the results from sieve estimation to establish the consistency, the rates of convergence and the asymptotic normality of the neural network estimators. We also illustrate the validity of the theories via simulations.
In the Gaussian white noise model, we study the estimation of an unknown multidimensional function $f$ in the uniform norm by using kernel methods. The performances of procedures are measured by using the maxiset point of view: we determine the set of functions which are well estimated (at a prescribed rate) by each procedure. So, in this paper, we determine the maxisets associated to kernel estimators and to the Lepski procedure for the rate of convergence of the form $(log n/n)^{be/(2be+d)}$. We characterize the maxisets in terms of Besov and Holder spaces of regularity $beta$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا