Do you want to publish a course? Click here

Effects of Two-Dimensional Material Thickness and Surrounding Dielectric Medium on Coulomb Interactions and Excitons

111   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the impact of quantum confinement on the interaction potential between two charges in two-dimensional semiconductor nanosheets in solution. The resulting effective potential depends on two length scales, namely the thickness $d$ and an emergent length scale $d^* equiv epsilon d / epsilon_{text{sol}}$, where $epsilon$ is the permittivity of the nanosheet and $epsilon_{text{sol}}$ is the permittivity of the solvent. In particular, quantum confinement, and not electrostatics, is responsible for the logarithmic behavior of the effective potential for separations smaller than $d$, instead of the one-over-distance bulk Coulomb interaction. Finally, we corroborate that the exciton binding energy also depends on the two-dimensional exciton Bohr radius $a_0$ in addition to the length scales $d$ and $d^*$ and analyze the consequences of this dependence.



rate research

Read More

We demonstrate that, in monolayers (MLs) of semiconducting transition metal dichalcogenides, the $s$-type Rydberg series of excitonic states follows a simple energy ladder: $epsilon_n=-Ry^*/(n+delta)^2$, $n$=1,2,ldots, in which $Ry^*$ is very close to the Rydberg energy scaled by the dielectric constant of the medium surrounding the ML and by the reduced effective electron-hole mass, whereas the ML polarizability is only accounted for by $delta$. This is justified by the analysis of experimental data on excitonic resonances, as extracted from magneto-optical measurements of a high-quality WSe$_2$ ML encapsulated in hexagonal boron nitride (hBN), and well reproduced with an analytically solvable Schrodinger equation when approximating the electron-hole potential in the form of a modified Kratzer potential. Applying our convention to other, MoSe$_2$, WS$_2$, MoS$_2$ MLs encapsulated in hBN, we estimate an apparent magnitude of $delta$ for each of the studied structures. Intriguingly, $delta$ is found to be close to zero for WSe$_2$ as well as for MoS$_2$ monolayers, what implies that the energy ladder of excitonic states in these two-dimensional structures resembles that of Rydberg states of a three-dimensional hydrogen atom.
Atomically thin materials are exceedingly susceptible to their dielectric environment. For transition metal dichalcogenides, sample placement on a substrate or encapsulation in hexagonal boron nitride (hBN) are frequently used. In this paper we show that the dielectric response due to optical phonons of adjacent materials influences excitons in 2d crystals. We provide an analytic model for the coupling of 2d charge carriers to optical substrate phonons, which causes polaron effects similar to that of intrinsic 2d phonons. We apply the model to hBN-encapsulated WSe2, finding a significant reduction of the exciton binding energies due to dynamical screening effects.
We study direct and indirect magnetoexcitons in Rydberg states in monolayers and double-layer heterostructures of Xenes (silicene, germanene, and stanene) in external parallel electric and magnetic fields, applied perpendicular to the monolayer and heterostructure. We calculate binding energies of magnetoexcitons for the Rydberg states 1$s$, 2$s$, 3$s$, and 4$s$, by numerical integration of the Schr{o}dinger equation using the Rytova-Keldysh potential for direct magnetoexciton and both the Rytova-Keldysh and Coulomb potentials for indirect excitons. Latter allows understanding a role of screening in Xenes. In the external perpendicular electric field, the buckled structure of the Xene monolayers leads to appearance of potential difference between sublattices allowing to tune electron and hole masses and, therefore, the binding energies and diamagnetic coefficients (DMCs) of magnetoexcitons. We report the energy contribution from electric and magnetic fields to the binding energies and DMCs. The tunability of the energy contribution of direct and indirect magnetoexcitons by electric and magnetic fields is demonstrated. It is also shown that DMCs of direct excitons can be tuned by the electric field, and the DMCs of indirect magnetoexcitons can be tuned by the electric field and manipulated by the number of h-BN layers. Therefore, these allowing the possibility of electronic devices design that can be controlled by external electric and magnetic fields and the number of h-BN layers. The calculations of the binding energies and DMCs of magnetoexcitons in Xenes monolayers and heterostructures are novel and can be compared with the experimental results when they will be available.
Recent experiments by Kavousanakis et al., Langmuir, 2018 [1], showed that reversible electrowetting on superhydrophobic surfaces can be achieved by using a thick solid dielectric layer (e.g. tens of micrometers). It has also been shown, through equilibrium (static) computations, that when the dielectric layer is thick enough the electrostatic pressure is smoothly distributed along the droplet surface, thus the irreversible Cassie to Wenzel wetting transitions can be prevented. In the present work we perform more realistic, dynamic simulations of the electrostatically-induced spreading on superhydrophobic surfaces. To this end, we employ an efficient numerical scheme which enables us to fully take into account the topography of the solid substrate. We investigate in detail the role of the various characteristics of the substrate (i.e. the dielectric thickness, geometry and material wettability) and present relevant flow maps for the resulting wetting states. Through our dynamic simulations, we identify the conditions under which it is possible to achieve reversible electrowetting. We have found that not only the collapse (Cassie-Baxter to Wenzel) transitions but also the contact angle hysteresis of the substrate significantly affects the reversibility.
We study the splitting between the right-hand and left-hand circularly polarized luminescence lines in a quantum dot under relatively weak confinement regime and resonant high-power excitation. When the dot is populated with an even number of electron-hole pairs (biexciton and higher excitations), the splitting measures basically the Zeeman energy. However, in the odd number of pairs case, we have, in addition to the Zeeman and Overhauser shifts, a contribution to the splitting coming from Coulomb interactions. This contribution is of the order of a few meV, and shows distinct signatures of shell-filling in the quantum dot.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا