Do you want to publish a course? Click here

Fermion self-trapping in the optical geometry of Einstein-Dirac solitons

72   0   0.0 ( 0 )
 Added by Peter Leith
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze gravitationally localized states of multiple fermions with high angular momenta, in the formalism introduced by Finster, Smoller, and Yau [Phys Rev. D 59, 104020 (1999)]. We show that the resulting soliton-like wave functions can be naturally interpreted in terms of a form of self-trapping, where the fermions become localized on shells the locations of which correspond to those of `bulges in the optical geometry created by their own energy density.



rate research

Read More

We present an analysis of excited-state solutions for a gravitationally localized system consisting of a filled shell of high-angular-momentum fermions, using the Einstein-Dirac formalism introduced by Finster, Smoller, and Yau [Phys. Rev. D 59, 104020 (1999)]. We show that, even when the particle number is relatively low ($N_fge 6$), the increased nonlinearity in the system causes a significant deviation in behavior from the two-fermion case. Excited-state solutions can no longer be uniquely identified by the value of their central redshift, with this multiplicity producing distortions in the characteristic spiraling forms of the mass-radius relations. We discuss the connection between this effect and the internal structure of solutions in the relativistic regime.
We construct a specific example of a class of traversable wormholes in Einstein-Dirac-Maxwell theory in four spacetime dimensions, without needing any form of exotic matter. Restricting to a model with two massive fermions in a singlet spinor state, we show the existence of spherically symmetric asymptotically flat configurations which are free of singularities, representing localized states. These solutions satisfy a generalized Smarr relation, being connected with the extremal Reissner-Nordstrom black holes. They also possess a finite mass $M$ and electric charge $Q_e$, with $Q_e/M>1$. An exact wormhole solution with ungauged, massless fermions is also reported.
We study the properties of the loosely trapped surface (LTS) and the dynamically transversely trapping surface (DTTS) in Einstein-Maxwell systems. These concepts of surfaces were proposed by the four of the present authors in order to characterize strong gravity regions. We prove the Penrose-like inequalities for the area of LTSs/DTTSs. Interestingly, although the naively expected upper bound for the area is that of the photon sphere of a Reissner-Nordstroem black hole with the same mass and charge, the obtained inequalities include corrections represented by the energy density or pressure/tension of electromagnetic fields. Due to this correction, the Penrose-like inequality for the area of LTSs is tighter than the naively expected one. We also evaluate the correction term numerically in the Majumdar-Papapetrou two-black-hole spacetimes.
We start from a static, spherically symmetric space-time in the presence of an electrostatic field and construct the mini-superspace Lagrangian that reproduces the well known Reissner - Nordstrom solution. We identify the classical integrals of motion that are to be mapped to quantum observables and which are associated with the mass and charge. Their eigenvalue equations are used as supplementary conditions to the Wheeler-DeWitt equation and a link is provided between the existence of an horizon and to whether the spectrum of the observables is fully discrete or not. For each case we provide an orthonormal basis of states as emerges through the process of canonical quantization.
Relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry is considered. The Fermi coordinates adapted to the time-like geodesic are utilized to describe the low-energy physics in the laboratory and to calculate the leading correction due to the curvature of the space-time geometry to the Schrodinger equation. The correction is employed to calculate the probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzchild black hole. Since the excited states decay due to spontaneous photon emission, this study provides the theoretical base for detection of small isolated black holes by observing the decay of the excited states as neutral hydrogen atoms in the vacuum are devoured by the black hole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا