No Arabic abstract
We study the properties of the loosely trapped surface (LTS) and the dynamically transversely trapping surface (DTTS) in Einstein-Maxwell systems. These concepts of surfaces were proposed by the four of the present authors in order to characterize strong gravity regions. We prove the Penrose-like inequalities for the area of LTSs/DTTSs. Interestingly, although the naively expected upper bound for the area is that of the photon sphere of a Reissner-Nordstroem black hole with the same mass and charge, the obtained inequalities include corrections represented by the energy density or pressure/tension of electromagnetic fields. Due to this correction, the Penrose-like inequality for the area of LTSs is tighter than the naively expected one. We also evaluate the correction term numerically in the Majumdar-Papapetrou two-black-hole spacetimes.
A dynamically transversely trapping surface (DTTS) is a new concept of an extension of a photon sphere that appropriately represents a strong gravity region and has close analogy with a trapped surface. We study formation of a marginally DTTS in time-symmetric, conformally flat initial data with two black holes, with a spindle-shaped source, and with a ring-shaped source, and clarify that $mathcal{C}lesssim 6pi GM$ describes the condition for the DTTS formation well, where $mathcal{C}$ is the circumference and $M$ is the mass of the system. This indicates that an understanding analogous to the hoop conjecture for the horizon formation is possible. Exploring the ring system further, we find configurations where a marginally DTTS with the torus topology forms inside a marginally DTTS with the spherical topology, without being hidden by an apparent horizon. There also exist configurations where a marginally trapped surface with the torus topology forms inside a marginally trapped surface with the spherical topology, showing a further similarity between DTTSs and trapped surfaces.
We present several new exact solutions in five and higher dimensional Einstein-Maxwell theory by embedding the Nutku instanton. The metric functions for the five-dimensional solutions depend only on a radial coordinate and on two spatial coordinates for the six and higher dimensional solutions. The six and higher dimensional metric functions are convoluted-like integrals of two special functions. We find that the solutions are regular almost everywhere and some spatial sections of the solution describe wormhole handles. We also find a class of exact and nonstationary convoluted-like solutions to the Einstein-Maxwell theory with a cosmological constant.
We construct a specific example of a class of traversable wormholes in Einstein-Dirac-Maxwell theory in four spacetime dimensions, without needing any form of exotic matter. Restricting to a model with two massive fermions in a singlet spinor state, we show the existence of spherically symmetric asymptotically flat configurations which are free of singularities, representing localized states. These solutions satisfy a generalized Smarr relation, being connected with the extremal Reissner-Nordstrom black holes. They also possess a finite mass $M$ and electric charge $Q_e$, with $Q_e/M>1$. An exact wormhole solution with ungauged, massless fermions is also reported.
Exact black hole solutions in the Einstein-Maxwell-scalar theory are constructed. They are the extensions of dilaton black holes in de Sitter or anti de Sitter universe. As a result, except for a scalar potential, a coupling function between the scalar field and the Maxwell invariant is present. Then the corresponding Smarr formula and the first law of thermodynamics are investigated.
We present higher-dimensional generalizations of the Buchdahl and Janis-Robinson-Winicour transformations which generate static solutions in the Einstein-Maxwell system with a massless scalar field. While the former adds a nontrivial scalar field to a vacuum solution, the latter generates a charged solution from a neutral one with the same scalar field. Applying these transformations to (i) a static solution with an Einstein base manifold, (ii) a multi-center solution, and (iii) a four-dimensional cylindrically symmetric solution, we construct several new exact solutions.