No Arabic abstract
We construct a specific example of a class of traversable wormholes in Einstein-Dirac-Maxwell theory in four spacetime dimensions, without needing any form of exotic matter. Restricting to a model with two massive fermions in a singlet spinor state, we show the existence of spherically symmetric asymptotically flat configurations which are free of singularities, representing localized states. These solutions satisfy a generalized Smarr relation, being connected with the extremal Reissner-Nordstrom black holes. They also possess a finite mass $M$ and electric charge $Q_e$, with $Q_e/M>1$. An exact wormhole solution with ungauged, massless fermions is also reported.
Exact black hole solutions in the Einstein-Maxwell-scalar theory are constructed. They are the extensions of dilaton black holes in de Sitter or anti de Sitter universe. As a result, except for a scalar potential, a coupling function between the scalar field and the Maxwell invariant is present. Then the corresponding Smarr formula and the first law of thermodynamics are investigated.
We present a traversable wormhole solution using the traceless $f(R,T)$ theory of gravity. In the $f(R,T)$ gravity, the Ricci scalar $R$ in the Einstein-Hilbert action is replaced by a function of $R$ and trace of the energy momentum tensor $T$. The traceless version of the $f(R,T)$ gravity gives rise to a possible wormhole geometry without need for exotic matter, which violates the principle of causality. Using a physically plausible ansatz for the wormholes shape function, the traceless field equations lead to compliance with the weak energy condition at very well defined intervals of the coupling constant $lambda$ in the $f(R,T)=R+2lambda T$ form. Our solution leads to other well-behaved energy conditions considering some possible values of the parameter $omega$ in the equation of state $p_r=omega rho$, with $p_r$ being the radial pressure and $rho $ the density. The energy conditions are obeyed in the ranges $lambda < -4pi$ and $omega > -1$. Through the calculation of the Volume Integral Quantifier, one sees that this wormholes can be traversable and respect the causality, since the amount of exotic matter in its interior can be arbitrarily small.
We present several new exact solutions in five and higher dimensional Einstein-Maxwell theory by embedding the Nutku instanton. The metric functions for the five-dimensional solutions depend only on a radial coordinate and on two spatial coordinates for the six and higher dimensional solutions. The six and higher dimensional metric functions are convoluted-like integrals of two special functions. We find that the solutions are regular almost everywhere and some spatial sections of the solution describe wormhole handles. We also find a class of exact and nonstationary convoluted-like solutions to the Einstein-Maxwell theory with a cosmological constant.
We prove that any asymptotically flat static spacetime in higher dimensional Einstein-Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein-Maxwell theory.
The present paper is intended for studying the effect of strong gravitational lensing in the context of charged wormhole. To study this effect, the conditions determining the existence of photon spheres at and outside the throat are obtained. The necessary and sufficient conditions for the existence of photon spheres at or outside the throat of the charged wormhole is derived. Furthermore, photon spheres are investigated in three cases for three different forms of redshift function. These three cases include the existence of effective photon spheres (i) at the throat, (ii) outside the throat and (iii) both at and outside the throat. Consequently, these provide the information about the formation of infinite number of concentric rings and may lead to the detection of wormhole geometries.