Do you want to publish a course? Click here

Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects

373   0   0.0 ( 0 )
 Added by Chuandong Lin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A multiple-relaxation-time discrete Boltzmann model (DBM) is proposed for multicomponent mixtures, where compressible, hydrodynamic, and thermodynamic nonequilibrium effects are taken into account. It allows the specific heat ratio and the Prandtl number to be adjustable, and is suitable for both low and high speed fluid flows. From the physical side, besides being consistent with the multicomponent Navier-Stokes equations, Ficks law and Stefan-Maxwell diffusion equation in the hydrodynamic limit, the DBM provides more kinetic information about the nonequilibrium effects. The physical capability of DBM to describe the nonequilibrium flows, beyond the Navier-Stokes representation, enables the study of the entropy production mechanism in complex flows, especially in multicomponent mixtures. Moreover, the current kinetic model is employed to investigate nonequilibrium behaviors of the compressible Kelvin-Helmholtz instability (KHI). It is found that, in the dynamic KHI process, the mixing degree and fluid flow are similar for cases with various thermal conductivity and initial temperature configurations. Physically, both heat conduction and temperature exert slight influences on the formation and evolution of the KHI.



rate research

Read More

A new lattice Boltzmann model for multicomponent ideal gas mixtures is presented. The model development consists of two parts. First, a new kinetic model for Stefan- Maxwell diffusion amongst the species is proposed and realized as a lattice Boltzmann equation on the standard discrete velocity set. Second, a compressible lattice Boltzmann model for the momentum and energy of the mixture is established. Both parts are consistently coupled through mixture composition, momentum, pressure, energy and enthalpy whereby a passive scalar advection-diffusion coupling is obviated, unlike in previous approaches. The proposed model is realized on the standard three-dimensional lattices and is validated with a set of benchmarks highlighting various physical aspects of compressible mixtures. Stefan-Maxwell diffusion is tested against experiment and theory of uphill diffusion of argon and methane in a ternary mixture with hydrogen. The speed of sound is measured in various binary and ternary compositions. We further validate the Stefan-Maxwell diffusion coupling with hydrodynamics by simulating diffusion in opposed jets and the three-dimensional Kelvin-Helmholtz instability of shear layers in a two-component mixture. Apart from the multicomponent compressible mixture, the proposed lattice Boltzmann model also provides an extension of the lattice Boltzmann equation to the compressible flow regime on the standard three-dimensional lattice.
235 - Yudong Zhang , Aiguo Xu , 2018
Discrete Boltzmann model (DBM) is a type of coarse-grained mesoscale kinetic model derived from the Boltzmann equation. Physically, it is roughly equivalent to a hydrodynamic model supplemented by a coarse-grained model for the relevant thermodynamic non-equilibrium (TNE) behaviours. The Navier-Stokes (NS) model is a traditional macroscopic hydrodynamic model based on continuity hypothesis and conservation laws. In this study, the two models are compared from two aspects, physical capability and computational cost, by simulating two kinds of flow problems including the thermal Couette flow and a Mach 3 step problem. In the cases where the TNE effects are weak, both the two models give accurate results for the hydrodynamic behaviour. Besides, DBM can provide more detailed non-equilibrium information, while the NS is more efficient if concern only the density, momentum, energy and their derived quantities. It is concluded that, if the TNE effects are strong or are to be investigated, the NS is insufficient while DBM is a good choice. While in the cases where the TNE effects are weak and only the macro flow fields are to be studied, the NS is more preferable.
When boiling occurs in a liquid flow field, the phenomenon is known as forced-convection boiling. We numerically investigate such a boiling system on a cylinder in a flow at a saturated condition. To deal with the complicated liquid-vapor phase-change phenomenon, we develop a numerical scheme based on the pseudopotential lattice Boltzmann method (LBM). The collision stage is performed in the space of central moments (CMs) to enhance numerical stability for high Reynolds numbers. The adopted forcing scheme, consistent with the CMs-based LBM, leads to a concise yet robust algorithm. Furthermore, additional terms required to ensure thermodynamic consistency are derived in a CMs framework. The effectiveness of the present scheme is successfully tested against a series of boiling processes, including nucleation, growth, and departure of a vapor bubble for Reynolds numbers varying between 30 and 30000. Our CMs-based LBM can reproduce all the boiling regimes, i.e., nucleate boiling, transition boiling, and film boiling, without any artificial input such as initial vapor phase. We find that the typical boiling curve, also known as the Nukiyama curve, appears even though the focused system is not the pool boiling but the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime. Finally, we provide quantitative comparison with the semi-empirical correlations for the forced-convection film boiling on a cylinder on the Nu-Ja diagram.
A two-fluid Discrete Boltzmann Model(DBM) for compressible flows based on Ellipsoidal Statistical Bhatnagar-Gross-Krook(ES-BGK) is presented. The model has flexible Prandtl number or specific heat ratio. Mathematically, the model is composed of two coupled Discrete Boltzmann Equations(DBE). Each DBE describes one component of the fluid. Physically, the model is equivalent to a macroscopic fluid model based on Navier-Stokes(NS) equations, and supplemented by a coarse-grained model for thermodynamic non-equilibrium behaviors. To obtain a flexible Prandtl number, a coefficient is introduced in the ellipsoidal statistical distribution function to control the viscosity. To obtain a flexible specific heat ratio, a parameter is introduced in the energy kinetic moments to control the extra degree of freedom. For binary mixture, the correspondence between the macroscopic fluid model and the DBM may be several-to-one. Five typical benchmark tests are used to verify and validate the model. Some interesting non-equilibrium results, which are not available in the NS model or the single-fluid DBM, are presented.
This article presents an original methodology for the prediction of steady turbulent aerodynamic fields. Due to the important computational cost of high-fidelity aerodynamic simulations, a surrogate model is employed to cope with the significant variations of several inflow conditions. Specifically, the Local Decomposition Method presented in this paper has been derived to capture nonlinear behaviors resulting from the presence of continuous and discontinuous signals. A combination of unsupervised and supervised learning algorithms is coupled with a physical criterion. It decomposes automatically the input parameter space, from a limited number of high-fidelity simulations, into subspaces. These latter correspond to different flow regimes. A measure of entropy identifies the subspace with the expected strongest non-linear behavior allowing to perform an active resampling on this low-dimensional structure. Local reduced-order models are built on each subspace using Proper Orthogonal Decomposition coupled with a multivariate interpolation tool. The methodology is assessed on the turbulent two-dimensional flow around the RAE2822 transonic airfoil. It exhibits a significant improvement in term of prediction accuracy for the Local Decomposition Method compared with the classical method of surrogate modeling for cases with different flow regimes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا