No Arabic abstract
When boiling occurs in a liquid flow field, the phenomenon is known as forced-convection boiling. We numerically investigate such a boiling system on a cylinder in a flow at a saturated condition. To deal with the complicated liquid-vapor phase-change phenomenon, we develop a numerical scheme based on the pseudopotential lattice Boltzmann method (LBM). The collision stage is performed in the space of central moments (CMs) to enhance numerical stability for high Reynolds numbers. The adopted forcing scheme, consistent with the CMs-based LBM, leads to a concise yet robust algorithm. Furthermore, additional terms required to ensure thermodynamic consistency are derived in a CMs framework. The effectiveness of the present scheme is successfully tested against a series of boiling processes, including nucleation, growth, and departure of a vapor bubble for Reynolds numbers varying between 30 and 30000. Our CMs-based LBM can reproduce all the boiling regimes, i.e., nucleate boiling, transition boiling, and film boiling, without any artificial input such as initial vapor phase. We find that the typical boiling curve, also known as the Nukiyama curve, appears even though the focused system is not the pool boiling but the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime. Finally, we provide quantitative comparison with the semi-empirical correlations for the forced-convection film boiling on a cylinder on the Nu-Ja diagram.
In recent years, the lattice Boltzmann (LB) method has been widely employed to simulate boiling phenomena [A. Markus and G. Hazi, Phys. Rev. E 83, 046705 (2011); Biferale et al., Phys. Rev. Lett. 108, 104502 (2012); Li et al., Phys. Rev. E 96, 063303 (2017); Wu et al., Int. J. Heat Mass Transfer 126, 773 (2018)]. However, a very important issue still remains open, i.e., how does boiling occur in the LB simulations? For instance, the existing LB studies showed that the boiling on a hydrophobic surface begins at a lower wall superheat than that on a hydrophilic surface, which qualitatively agrees well with experimental studies, but no one has yet explained how this phenomenon appears in the LB simulations and what happened in the simulations after changing the wettability of the heating surface. In this paper, the LB boiling mechanism is revealed by analyzing boiling on a flat surface with mixed wettability and boiling on a structured surface with homogeneous wettability. Through a theoretical analysis, we demonstrate that, when the same wall superheat is applied, in the LB boiling simulations the fluid density near the heating surface decreases faster on a hydrophobic surface than that on a hydrophilic surface. Accordingly, a lower wall superheat can induce the phase transition from liquid to vapor on a hydrophobic surface than that on a hydrophilic surface. Furthermore, a similar theoretical analysis shows that the fluid density decreases fastest at concave corners in the case of a structured surface with homogeneous wettability, which explains why vapor bubbles are nucleated at concave corners in the LB simulations of boiling on structured surfaces.
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and investigate a new rectangular central moment LBM based on non-orthogonal moment basis (referred to as RC-LBM). The equilibria to which the central moments relax under collision in this approach are obtained from matching with those corresponding to the continuous Maxwell distribution. A Chapman-Enskog analysis is performed to derive the correction terms to the second order moment equilibria involving the grid aspect ratio and velocity gradients that restores the isotropy of the viscous stress tensor and eliminates the non-Galilean invariant cubic velocity terms of the resulting hydrodynamical equations. A special case of this rectangular formulation involving the raw moments (referred to as the RNR-LBM) is also constructed. The resulting schemes represent a considerable simplification, especially for the transformation matrices and isotropy corrections, and improvement over the existing MRT-LB schemes on rectangular lattice grids that use orthogonal moment basis. Numerical validation study of both the RC-LBM and RNR-LBM for a variety of benchmark flow problems are performed that show good accuracy at various grid aspect ratios. The ability of our proposed schemes to simulate flows using relatively lower grid aspect ratios than considered in prior rectangular LB approaches is demonstrated. Furthermore, simulations reveal the superior stability characteristics of the RC-LBM over RNR-LBM in handling shear flows at lower viscosities and/or higher characteristic velocities. In addition, computational advantages of using our rectangular LB formulation in lieu of that based on the square lattice is shown.
The combination of microstructures and mixed wettability for enhancing nucleate boiling has attracted much attention in recent years. However, in the existing experimental and numerical studies, the tops of microstructures are entirely subjected to wettability modification, which makes the influences of mixed wettability dependant on the characteristic length of microstructures. In order to disclose the joint effects of surface structure and mixed wettability on nucleate boiling, in this work we propose an improved type of pillar-textured surface with mixed wettability, in which the tops of square pillars are partially subjected to wettability modification. Numerical investigation of the boiling heat transfer performance on the improved mixed-wettability surface is carried out using a three-dimensional thermal multiphase lattice Boltzmann model. The numerical results show that the width of the wettability-modified region plays an important role in the boiling performance of the improved mixed-wettability surface and the best boiling performance is achieved in the situation that the width of the wettability-modified region is sufficiently large but the bubble nucleated on the pillar top still does not interfere with the coalescence-departure mechanism of the bubbles nucleated around the pillar, which optimizes the joint effects of surface structure and mixed wettability for enhancing nucleate boiling. The influences of the shape of the wettability-modified region are also studied. Among the investigated shapes, the square is found to perform better than the other two shapes.
It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this Letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments.
An experimental and numerical smoothed particle hydrodynamics (SPH) analysis was performed for the convective flow arising from a horizontal, thin cylindrical heat source enclosed in a glycerin-filled, slender enclosure at low Rayleigh numbers ($1.18leq {rm Ra}leq 242$). Both the experiments and the SPH calculations were performed for positive ($0.1leqDelta Tleq 10$ K) and negative ($-10leqDelta Tleq -0.1$ K) temperature differences between the source and the surrounding fluid. In all cases a pair of steady, counter-rotating vortices is formed, accompanied by a plume of vertically ascending flow just above the source for $Delta T>0$ and a vertically descending flow just below the source for $Delta T<0$. The maximum flow velocities always occur within the ascending/descending plumes. The SPH predictions are found to match the experimental observations acceptably well with root-mean-square errors in the velocity profiles of the order of $sim 10^{-5}$ m s$^{-1}$. The fact that the SPH method is able to reveal the detailed features of the flow phenomenon demonstrates the correctness of the approach.