No Arabic abstract
Users often query a search engine with a specific question in mind and often these queries are keywords or sub-sentential fragments. For example, if the users want to know the answer for Whats the capital of USA, they will most probably query capital of USA or USA capital or some keyword-based variation of this. For example, for the user entered query capital of USA, the most probable question intent is Whats the capital of USA?. In this paper, we are proposing a method to generate well-formed natural language question from a given keyword-based query, which has the same question intent as the query. Conversion of keyword-based web query into a well-formed question has lots of applications, with some of them being in search engines, Community Question Answering (CQA) website and bots communication. We found a synergy between query-to-question problem with standard machine translation(MT) task. We have used both Statistical MT (SMT) and Neural MT (NMT) models to generate the questions from the query. We have observed that MT models perform well in terms of both automatic and human evaluation.
In this paper we present a question answering system using a neural network to interpret questions learned from the DBpedia repository. We train a sequence-to-sequence neural network model with n-triples extracted from the DBpedia Infobox Properties. Since these properties do not represent the natural language, we further used question-answer dialogues from movie subtitles. Although the automatic evaluation shows a low overlap of the generated answers compared to the gold standard set, a manual inspection of the showed promising outcomes from the experiment for further work.
Many search systems work with large amounts of natural language data, e.g., search queries, user profiles and documents, where deep learning based natural language processing techniques (deep NLP) can be of great help. In this paper, we introduce a comprehensive study of applying deep NLP techniques to five representative tasks in search engines. Through the model design and experiments of the five tasks, readers can find answers to three important questions: (1) When is deep NLP helpful/not helpful in search systems? (2) How to address latency challenges? (3) How to ensure model robustness? This work builds on existing efforts of LinkedIn search, and is tested at scale on a commercial search engine. We believe our experiences can provide useful insights for the industry and research communities.
Given a natural language query, teaching machines to ask clarifying questions is of immense utility in practical natural language processing systems. Such interactions could help in filling information gaps for better machine comprehension of the query. For the task of ranking clarification questions, we hypothesize that determining whether a clarification question pertains to a missing entry in a given post (on QA forums such as StackExchange) could be considered as a special case of Natural Language Inference (NLI), where both the post and the most relevant clarification question point to a shared latent piece of information or context. We validate this hypothesis by incorporating representations from a Siamese BERT model fine-tuned on NLI and Multi-NLI datasets into our models and demonstrate that our best performing model obtains a relative performance improvement of 40 percent and 60 percent respectively (on the key metric of Precision@1), over the state-of-the-art baseline(s) on the two evaluation sets of the StackExchange dataset, thereby, significantly surpassing the state-of-the-art.
The NLC2CMD Competition hosted at NeurIPS 2020 aimed to bring the power of natural language processing to the command line. Participants were tasked with building models that can transform descriptions of command line tasks in English to their Bash syntax. This is a report on the competition with details of the task, metrics, data, attempted solutions, and lessons learned.
In this paper, we propose a novel method for video moment retrieval (VMR) that achieves state of the arts (SOTA) performance on R@1 metrics and surpassing the SOTA on the high IoU metric (R@1, IoU=0.7). First, we propose to use a multi-head self-attention mechanism, and further a cross-attention scheme to capture video/query interaction and long-range query dependencies from video context. The attention-based methods can develop frame-to-query interaction and query-to-frame interaction at arbitrary positions and the multi-head setting ensures the sufficient understanding of complicated dependencies. Our model has a simple architecture, which enables faster training and inference while maintaining . Second, We also propose to use multiple task training objective consists of moment segmentation task, start/end distribution prediction and start/end location regression task. We have verified that start/end prediction are noisy due to annotator disagreement and joint training with moment segmentation task can provide richer information since frames inside the target clip are also utilized as positive training examples. Third, we propose to use an early fusion approach, which achieves better performance at the cost of inference time. However, the inference time will not be a problem for our model since our model has a simple architecture which enables efficient training and inference.