Do you want to publish a course? Click here

Dust entrainment in galactic winds

73   0   0.0 ( 0 )
 Added by Rahul Kannan
 Publication date 2020
  fields Physics
and research's language is English
 Authors Rahul Kannan




Ask ChatGPT about the research

Winds driven by stellar feedback are an essential part of the galactic ecosystem and are the main mechanism through which low-mass galaxies regulate their star formation. These winds are generally observed to be multi-phase with detections of entrained neutral and molecular gas. They are also thought to enrich the circum-galactic medium around galaxies with metals and dust. This ejected dust encodes information about the integrated star formation and outflow history of the galaxy. It is therefore, important to understand how much dust is entrained and driven out of the disc by galactic winds. Here we demonstrate that stellar feedback is efficient in driving dust-enriched winds and eject enough material to account for the amount of extraplanar dust observed in nearby galaxies. The amount of dust in the wind depends on the sites from where they are launched, with dustier galaxies launching more dust enriched outflows. Moreover, the outflowing cold-dense gas is significantly more dust-enriched than the volume filling hot tenuous material, naturally reproducing the complex multiphase structure of the outflowing wind observed in nearby galaxies. These results provide an important new insight into the dynamics, structure, and composition of galactic winds and their role in determining the dust content of the extragalactic gas in galaxies.



rate research

Read More

X-ray- and EUV- (XEUV-) driven photoevaporative winds acting on protoplanetary disks around young T-Tauri stars may crucially impact disk evolution, affecting both gas and dust distributions. We investigate the dust entrainment in XEUV-driven photoevaporative winds and compare our results to existing MHD and EUV-only models. For an X-ray luminosity of $L_X = 2 cdot 10^{30},mathrm{erg/s}$ emitted by a $M_* = 0.7,mathrm{M}_odot$ star, corresponding to a wind mass-loss rate of $dot{M}_mathrm{w} simeq 2.6 cdot 10^{-8} ,mathrm{M_odot/yr}$, we find dust entrainment for sizes $a_0 lesssim 11,mu$m ($9,mu$m) from the inner $25,$AU ($120,$AU). This is an enhancement over dust entrainment in less vigorous EUV-driven winds with $dot{M}_mathrm{w} simeq 10^{-10},mathrm{M_odot/yr}$. Our numerical model also shows deviations of dust grain trajectories from the gas streamlines even for $mu$m-sized particles. In addition, we find a correlation between the size of the entrained grains and the maximum height they reach in the outflow.
Infrared observations of active galactic nucleus (AGN) reveal emission from the putative dusty circumnuclear torus invoked by AGN unification, that is heated up by radiation from the central accreting black hole (BH). The strong 9.7 and 18 micron silicate features observed in the AGN spectra both in emission and absorption, further indicate the presence of such dusty environments. We present detailed calculations of the chemistry of silicate dust formation in AGN accretion disk winds. The winds considered herein are magnetohydrodynamic (MHD) winds driven off the entire accretion disk domain that extends from the BH vicinity to the radius of BH influence, of order of 1 to 100 pc depending on the mass of the resident BH. Our results indicate that these winds provide conditions conducive to the formation of significant amounts of dust, especially for objects accreting close to their Eddington limit, making AGN a significant source of dust in the universe, especially for luminous quasars. Our models justify the importance of a r to the power -1 density law in the winds for efficient formation and survival of dust grains. The dust production rate scales linearly with the mass of the central BH and varies as a power law of index between 2 to 2.5 with the dimensionless mass accretion rate. The resultant distribution of the dense dusty gas resembles a toroidal shape, with high column density and optical depths along the equatorial viewing angles, in agreement with the AGN unification picture.
We present a detailed analysis of deep far-infrared observations of the nearby edge-on star-forming galaxy NGC 4631 obtained with the Herschel Space Observatory. Our PACS images at 70 and 160 um show a rich complex of filaments and chimney-like features that extends up to a projected distance of 6 kpc above the plane of the galaxy. The PACS features often match extraplanar Halpha, radio-continuum, and soft X-ray features observed in this galaxy, pointing to a tight disk-halo connection regulated by star formation. On the other hand, the morphology of the colder dust component detected on larger scale in the SPIRE 250, 350, and 500 um data matches the extraplanar H~I streams previously reported in NGC 4631 and suggests a tidal origin. The PACS 70/160 ratios are elevated in the central ~3.0 kpc region above the nucleus of this galaxy (the superbubble). A pixel-by-pixel analysis shows that dust in this region has a higher temperature and/or an emissivity with a steeper spectral index (beta > 2) than the dust in the disk, possibly the result of the harsher environment in the superbubble. Star formation in the disk seems energetically insufficient to lift the material out of the disk, unless it was more active in the past or the dust-to-gas ratio in the superbubble region is higher than the Galactic value. Some of the dust in the halo may also have been tidally stripped from nearby companions or lifted from the disk by galaxy interactions.
We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 $mu$m images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically $sim$10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches $sim$60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 $mu$m data.
We present a new implementation for active galactic nucleus (AGN) feedback through small-scale, ultra-fast winds in the moving-mesh hydrodynamic code AREPO. The wind is injected by prescribing mass, momentum and energy fluxes across a spherical boundary centred on a supermassive black hole according to available constraints for accretion disc winds. After sweeping-up a mass equal to their own, small-scale winds thermalise, powering energy-driven outflows with dynamics, structure and cooling properties in excellent agreement with those of analytic wind solutions. Momentum-driven solutions do not easily occur, because the Compton cooling radius is usually much smaller than the free-expansion radius of the small-scale winds. Through various convergence tests, we demonstrate that our implementation yields wind solutions which are well converged down to the typical resolution achieved in cosmological simulations. We test our model in hydrodynamic simulations of isolated Milky Way - mass galaxies. Above a critical AGN luminosity, initially spherical, small-scale winds power bipolar, energy-driven super-winds that break out of the galactic nucleus, flowing at speeds $> 1000 rm , km , s^{-1}$ out to $sim 10 , rm kpc$. These energy-driven outflows result in moderate, but long-term, reduction in star formation, which becomes more pronounced for higher AGN luminosities and faster small-scale winds. Suppression of star formation proceeds through a rapid mode that involves the removal of the highest-density, nuclear gas and through a slower mode that effectively halts halo gas accretion. Our new implementation makes it possible to model AGN-driven winds in a physically meaningful and validated way in simulations of galaxy evolution, the interstellar medium and black hole accretion flows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا