Do you want to publish a course? Click here

Dust entrainment in photoevaporative winds: The impact of X-rays

64   0   0.0 ( 0 )
 Added by Raphael Franz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray- and EUV- (XEUV-) driven photoevaporative winds acting on protoplanetary disks around young T-Tauri stars may crucially impact disk evolution, affecting both gas and dust distributions. We investigate the dust entrainment in XEUV-driven photoevaporative winds and compare our results to existing MHD and EUV-only models. For an X-ray luminosity of $L_X = 2 cdot 10^{30},mathrm{erg/s}$ emitted by a $M_* = 0.7,mathrm{M}_odot$ star, corresponding to a wind mass-loss rate of $dot{M}_mathrm{w} simeq 2.6 cdot 10^{-8} ,mathrm{M_odot/yr}$, we find dust entrainment for sizes $a_0 lesssim 11,mu$m ($9,mu$m) from the inner $25,$AU ($120,$AU). This is an enhancement over dust entrainment in less vigorous EUV-driven winds with $dot{M}_mathrm{w} simeq 10^{-10},mathrm{M_odot/yr}$. Our numerical model also shows deviations of dust grain trajectories from the gas streamlines even for $mu$m-sized particles. In addition, we find a correlation between the size of the entrained grains and the maximum height they reach in the outflow.



rate research

Read More

72 - Rahul Kannan 2020
Winds driven by stellar feedback are an essential part of the galactic ecosystem and are the main mechanism through which low-mass galaxies regulate their star formation. These winds are generally observed to be multi-phase with detections of entrained neutral and molecular gas. They are also thought to enrich the circum-galactic medium around galaxies with metals and dust. This ejected dust encodes information about the integrated star formation and outflow history of the galaxy. It is therefore, important to understand how much dust is entrained and driven out of the disc by galactic winds. Here we demonstrate that stellar feedback is efficient in driving dust-enriched winds and eject enough material to account for the amount of extraplanar dust observed in nearby galaxies. The amount of dust in the wind depends on the sites from where they are launched, with dustier galaxies launching more dust enriched outflows. Moreover, the outflowing cold-dense gas is significantly more dust-enriched than the volume filling hot tenuous material, naturally reproducing the complex multiphase structure of the outflowing wind observed in nearby galaxies. These results provide an important new insight into the dynamics, structure, and composition of galactic winds and their role in determining the dust content of the extragalactic gas in galaxies.
We investigate the roles of magnetically driven disk wind (MDW) and thermally driven photoevaporative wind (PEW) in the long-time evolution of protoplanetary disks. We start simulations from the early phase in which the disk mass is $0.118,{mathrm{M}_{odot}}$ around a $1,{mathrm{M}_{odot}}$ star and track the evolution until the disk is completely dispersed. We incorporate the mass loss by PEW and the mass loss and magnetic braking (wind torque) by MDW, in addition to the viscous accretion, viscous heating, and stellar irradiation. We find that MDW and PEW respectively have different roles: magnetically driven wind ejects materials from an inner disk in the early phase, whereas photoevaporation has a dominant role in the late phase in the outer ($gtrsim1,$au) disk. The disk lifetime, which depends on the combination of MDW, PEW, and viscous accretion, shows a large variation of $sim1$-$20,$Myr; the gas is dispersed mainly by the MDW and the PEW in the cases with a low viscosity and the lifetime is sensitive to the mass-loss rate and torque of the MDW, whereas the lifetime is insensitive to these parameters when the viscosity is high. Even in disks with very weak turbulence, the cooperation of MDW and PEW enables the disk dispersal within a few Myr.
WR 25 is a colliding-wind binary star system comprised of a very massive O2.5If*/WN6 primary and an O-star secondary in a 208-day period eccentric orbit. These hot stars have strong, highly-supersonic winds which interact to form a bright X-ray source from wind-collision-shocks whose conditions change with stellar separation. Different views through the WR and O star winds are afforded with orbital phase as the stars move about their orbits, allowing for exploration of wind structure in ways not easy or even possible for single stars. We have analyzed an on-axis Chandra/HETGS spectrum of WR 25 obtained shortly before periastron when the X-rays emanating from the system are the brightest. From the on-axis observations, we constrain the line fluxes, centroids, and widths of various emission lines, including He-triplets of Si XIII and Mg XI. We have also been able to include several serendipitous off-axis HETG spectra from the archive and study their flux variation with phase. This is the first report on high-resolution spectral studies of WR 25 in X-rays.
A necessary first step for dust removal in protoplanetary disc winds is the delivery of dust from the disc to the wind. In the case of ionized winds, the disc and wind are sharply delineated by a narrow ionization front where the gas density and temperature vary by more than an order of magnitude. Using a novel method that is able to model the transport of dust across the ionization front in the presence of disc turbulence, we revisit the problem of dust delivery. Our results show that the delivery of dust to the wind is determined by the vertical gas flow through the disc induced by the mass loss, rather than turbulent diffusion (unless the turbulence is strong, i.e. $alpha gtrsim 0.01$). Using these results we provide a simple relation between the maximum size of particle that can be delivered to the wind and the local mass-loss rate per unit area from the wind. This relation is independent of the physical origin of the wind and predicts typical sizes in the 0.01 -- $1,mu m$ range for EUV or X-ray driven winds. These values are a factor $sim 10$ smaller than those obtained when considering only whether the wind is able to carry away the grains.
We present a 3D semi-analytic model of self-gravitating discs, and include a prescription for dust trapping in the disc spiral arms. Using Monte-Carlo radiative transfer we produce synthetic ALMA observations of these discs. In doing so we demonstrate that our model is capable of producing observational predictions, and able to model real image data of potentially self-gravitating discs. For a disc to generate spiral structure that would be observable with ALMA requires that the discs dust mass budget is dominated by millimetre and centimetre-sized grains. Discs in which grains have grown to the grain fragmentation threshold may satisfy this criterion, thus we predict that signatures of gravitational instability may be detectable in discs of lower mass than has previously been suggested. For example, we find that discs with disc-to-star mass ratios as low as $0.10$ are capable of driving observable spiral arms. Substructure becomes challenging to detect in discs where no grain growth has occurred or in which grain growth has proceeded well beyond the grain fragmentation threshold. We demonstrate how we can use our model to retrieve information about dust trapping and grain growth through multi-wavelength observations of discs, and using estimates of the opacity spectral index. Applying our disc model to the Elias 27, WaOph 6 and IM Lup systems we find gravitational instability to be a plausible explanation for the observed substructure in all 3 discs, if sufficient grain growth has indeed occurred.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا