Do you want to publish a course? Click here

Topological Bose-Mott insulators in one-dimensional non-Hermitian superlattices

293   0   0.0 ( 0 )
 Added by Zhihao Xu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the topological properties of Bose-Mott insulators in one-dimensional non-Hermitian superlattices, which may serve as effective Hamiltonians for cold atomic optical systems with either two-body loss or one-body loss. We find that in the strongly repulsive limit, the Mott insulator states of the Bose-Hubbard model with a finite two-body loss under integer fillings are topological insulators characterized by a finite charge gap, nonzero integer Chern numbers, and nontrivial edge modes in a low-energy excitation spectrum under an open boundary condition. The two-body loss suppressed by the strong repulsion results in a stable topological Bose-Mott insulator which has shares features similar to the Hermitian case. However, for the non-Hermitian model related to the one-body loss, we find the non-Hermitian topological Mott insulators are unstable with a finite imaginary excitation gap. Finally, we also discuss the stability of the Mott phase in the presence of two-body loss by solving the Lindblad master equation.



rate research

Read More

We study interaction-induced Mott insulators, and their topological properties in a 1D non-Hermitian strongly-correlated spinful fermionic superlattice system with either nonreciprocal hopping or complex-valued interaction. For the nonreciprocal hopping case, the low-energy neutral excitation spectrum is sensitive to boundary conditions, which is a manifestation of the non-Hermitian skin effect. However, unlike the single-particle case, particle density of strongly correlated system does not suffer from the non-Hermitian skin effect due to the Pauli exclusion principle and repulsive interactions. Moreover, the anomalous boundary effect occurs due to the interplay of nonreciprocal hopping, superlattice potential, and strong correlations, where some in-gap modes, for both the neutral and charge excitation spectra, show no edge excitations defined via only the right eigenvectors. We show that these edge excitations of the in-gap states can be correctly characterized by only biorthogonal eigenvectors. Furthermore, the topological Mott phase, with gapless particle excitations around boundaries, exists even for the purely imaginary-valued interaction, where the continuous quantum Zeno effect leads to the effective on-site repulsion between two-component fermions.
Mott insulators sometimes show dramatic changes in their electronic states after photoirradiation, as indicated by photoinduced Mott-insulator-to-metal transition. In the photoexcited states of Mott insulators, electron wavefunctions are more delocalized than in the ground state, and long-range Coulomb interactions play important roles in charge dynamics. However, their effects are difficult to discriminate experimentally. Here, we show that in a one-dimensional Mott insulator, bis(ethylenedithio)tetrathiafulvalene-difluorotetracyanoquinodimethane (ET-F2TCNQ), long-range Coulomb interactions stabilize not only excitons, doublon-holon bound states, but also biexcitons. By measuring terahertz-electric-field-induced reflectivity changes, we demonstrate that odd- and even-parity excitons are split off from a doublon-holon continuum. Further, spectral changes of reflectivity induced by a resonant excitation of the odd-parity exciton reveals that an exciton-biexciton transition appears just below the exciton-transition peak. Theoretical simulations show that long-range Coulomb interactions over four sites are necessary to stabilize the biexciton. Such information is indispensable for understanding the non-equilibrium dynamics of photoexcited Mott insulators.
Employing the density-matrix renormalization group technique in the matrix-product-state representation, we investigate the photoexcited superconducting correlations induced by the $eta$-pairing mechanism in the half-filled Hubbard chain. We estimate the characteristic pair correlation function and verify the accuracy of our numerical results by comparison with exact-diagonalization data for small systems. The optimal parameter set of the pump that most enhances the $eta$-pair correlations, is calculated in the strong-coupling regime. For such a pump, we explore the possibility of quasi-long-range order.
157 - A. J. Beekman , J. Zaanen 2012
The Mott insulating state formed from bosons is ubiquitous in solid He-4, cold atom systems, Josephson junction networks and perhaps underdoped high-Tc superconductors. We predict that close to the quantum phase transition to the superconducting state the Mott insulator is not at all as featureless as is commonly believed. In three dimensions there is a phase transition to a low temperature state where, under influence of an external current, a superconducting state consisting of a regular array of wires that each carry a quantized flux of supercurrent is realized. This prediction of the type-II Mott insulator follows from a field theoretical weak-strong duality, showing that this current lattice is the dual of the famous Abrikosov lattice of magnetic fluxes in normal superconductors. We argue that this can be exploited to investigate experimentally whether preformed Cooper pairs exist in high-Tc superconductors.
376 - C. Wang , X. R. Wang 2021
Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of non-Hermitian topological insulators without parity-time symmetry can be Hermitian with real eigenenergies under certain conditions. Our finding allows one to construct Hermitian chiral edge and hinge states from non-Hermitian two-dimensional Chern insulators and three-dimensional second-order topological insulators, respectively. Such Hermitian chiral boundary channels have perfect transmission coefficients (quantized values) and are robust against disorders. Furthermore, a non-Hermitian topological insulator can undergo the topological Anderson insulator transition from a topological trivial non-Hermitian metal or insulator to a topological Anderson insulator with quantized transmission coefficients at finite disorders.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا