Do you want to publish a course? Click here

Hybridized Summation-By-Parts Finite Difference Methods

109   0   0.0 ( 0 )
 Added by Jeremy Kozdon
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a hybridization technique for summation-by-parts finite difference methods with weak enforcement of interface and boundary conditions for second order, linear elliptic partial differential equations. The method is based on techniques from the hybridized discontinuous Galerkin literature where local and global problems are defined for the volume and trace grid points, respectively. By using a Schur complement technique the volume points can be eliminated, which drastically reduces the system size. We derive both the local and global problems, and show that the linear systems that must be solved are symmetric positive definite. The theoretical stability results are confirmed with numerical experiments as is the accuracy of the method.



rate research

Read More

We develop an energy-based finite difference method for the wave equation in second order form. The spatial discretization satisfies a summation-by-parts (SBP) property. With boundary conditions and material interface conditions imposed weakly by the simultaneous-approximation-term (SAT) method, we derive energy estimates for the semi-discretization. In addition, error estimates are derived by the normal mode analysis. The energy-based discretization does not use any mesh-dependent parameter, even in the presence of Dirichlet boundary conditions and material interfaces. Furthermore, similar to upwind discontinuous Galerkin methods, numerical dissipation can be added to the discretization through the boundary conditions. We present numerical experiments that verify convergence and robustness of the proposed method.
We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The proposed coupling technique requires minimal changes in the existing schemes while maintaining strict stability, accuracy, and energy conservation. Results are demonstrated on linear and nonlinear scalar conservation laws in two spatial dimensions.
Parametric sensitivity analysis is a critical component in the study of mathematical models of physical systems. Due to its simplicity, finite difference methods are used extensively for this analysis in the study of stochastically modeled reaction networks. Different coupling methods have been proposed to build finite difference estimators, with the split coupling, also termed the stacked coupling, yielding the lowest variance in the vast majority of cases. Analytical results related to this coupling are sparse, and include an analysis of the variance of the coupled processes under the assumption of globally Lipschitz intensity functions [Anderson, SIAM Numerical Analysis, Vol. 50, 2012]. Because of the global Lipschitz assumption utilized in [Anderson, SIAM Numerical Analysis, Vol. 50, 2012], the main result there is only applicable to a small percentage of the models found in the literature, and it was conjectured that similar results should hold for a much wider class of models. In this paper we demonstrate this conjecture to be true by proving the variance of the coupled processes scales in the desired manner for a large class of non-Lipschitz models. We further extend the analysis to allow for time dependence in the parameters. In particular, binary systems with or without time-dependent rate parameters, a class of models that accounts for the vast majority of systems considered in the literature, satisfy the assumptions of our theory.
In this paper, we propose a novel Hermite weighted essentially non-oscillatory (HWENO) fast sweeping method to solve the static Hamilton-Jacobi equations efficiently. During the HWENO reconstruction procedure, the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils. However, one major novelty and difference from the traditional HWENO framework lies in the fact that, we do not need to introduce and solve any additional equations to update the derivatives of the unknown function $phi$. Instead, we use the current $phi$ and the old spatial derivative of $phi$ to update them. The traditional HWENO fast sweeping method is also introduced in this paper for comparison, where additional equations governing the spatial derivatives of $phi$ are introduced. The novel HWENO fast sweeping methods are shown to yield great savings in both computational time and storage, which improves the computational efficiency of the traditional HWENO scheme. In addition, a hybrid strategy is also introduced to further reduce computational costs. Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.
We consider finite difference approximations of the second derivative, exemplified in Poissons equation, the heat equation and the wave equation. The finite difference operators satisfy a summation-by-parts property, which mimics the integration-by-parts. Since the operators approximate the second derivative, they are singular by construction. To impose boundary conditions, these operators are modified using Simultaneous Approximation Terms. This makes the modified matrices non-singular, for most choices of boundary conditions. Recently, inverses of such matrices were derived. However, when considering Neumann boundary conditions on both boundaries, the modified matrix is still singular. For such matrices, we have derived an explicit expression for the Moore-Penrose pseudoinverse, which can be used for solving elliptic problems and some time-dependent problems. The condition for this new pseudoinverse to be valid, is that the modified matrix does not have more than one zero eigenvalue. We have reconstructed the sixth order accurate narrow-stencil operator with a free parameter and show that more than one zero eigenvalue can occur. We have performed a detailed analysis on the free parameter to improve the properties of the second derivative operator. We complement the derivations by numerical experiments to demonstrate the improvements of the new second derivative operator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا