We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The proposed coupling technique requires minimal changes in the existing schemes while maintaining strict stability, accuracy, and energy conservation. Results are demonstrated on linear and nonlinear scalar conservation laws in two spatial dimensions.
In this paper we discuss a hybridised method for FEM-BEM coupling. The coupling from both sides use a Nitsche type approach to couple to the trace variable. This leads to a formulation that is robust and flexible with respect to approximation spaces and can easily be combined as a building block with other hybridised methods. Energy error norm estimates and the convergence of Jacobi iterations are proved and the performance of the method is illustrated on some computational examples.
We present a hybridization technique for summation-by-parts finite difference methods with weak enforcement of interface and boundary conditions for second order, linear elliptic partial differential equations. The method is based on techniques from the hybridized discontinuous Galerkin literature where local and global problems are defined for the volume and trace grid points, respectively. By using a Schur complement technique the volume points can be eliminated, which drastically reduces the system size. We derive both the local and global problems, and show that the linear systems that must be solved are symmetric positive definite. The theoretical stability results are confirmed with numerical experiments as is the accuracy of the method.
In this work, we propose and develop efficient and accurate numerical methods for solving the Kirchhoff-Love plate model in domains with complex geometries. The algorithms proposed here employ curvilinear finite-difference methods for spatial discretization of the governing PDEs on general composite overlapping grids. The coupling of different components of the composite overlapping grid is through numerical interpolations. However, interpolations introduce perturbation to the finite-difference discretization, which causes numerical instability for time-stepping schemes used to advance the resulted semi-discrete system. To address the instability, we propose to add a fourth-order hyper-dissipation to the spatially discretized system to stabilize its time integration; this additional dissipation term captures the essential upwinding effect of the original upwind scheme. The investigation of strategies for incorporating the upwind dissipation term into several time-stepping schemes (both explicit and implicit) leads to the development of four novel algorithms. For each algorithm, formulas for determining a stable time step and a sufficient dissipation coefficient on curvilinear grids are derived by performing a local Fourier analysis. Quadratic eigenvalue problems for a simplified model plate in 1D domain are considered to reveal the weak instability due to the presence of interpolating equations in the spatial discretization. This model problem is further investigated for the stabilization effects of the proposed algorithms. Carefully designed numerical experiments are carried out to validate the accuracy and stability of the proposed algorithms, followed by two benchmark problems to demonstrate the capability and efficiency of our approach for solving realistic applications. Results that concern the performance of the proposed algorithms are also presented.
This work proposes a new stabilized $P_1times P_0$ finite element method for solving the incompressible Navier--Stokes equations. The numerical scheme is based on a reduced Bernardi--Raugel element with statically condensed face bubbles and is pressure-robust in the small viscosity regime. For the Stokes problem, an error estimate uniform with respect to the kinematic viscosity is shown. For the Navier--Stokes equation, the nonlinear convection term is discretized using an edge-averaged finite element method. In comparison with classical schemes, the proposed method does not require tuning of parameters and is validated for competitiveness on several benchmark problems in 2 and 3 dimensional space.
This paper develops the high-order accurate entropy stable (ES) finite difference schemes for the shallow water magnetohydrodynamic (SWMHD) equations.They are built on the numerical approximation of the modified SWMHD equations with the Janhunen source term. First, the second-order accurate well-balanced semi-discrete entropy conservative (EC) schemes are constructed, satisfying the entropy identity for the given convex entropy function and preserving the steady states of the lake at rest (with zero magnetic field). The key is to match both discretizations for the fluxes and the non-flat river bed bottom and Janhunen source terms, and to find the affordable EC fluxes of the second-order EC schemes. Next, by using the second-order EC schemes as building block, high-order accurate well-balanced semi-discrete EC schemes are proposed. Then, the high-order accurate well-balanced semi-discrete ES schemes %satisfying the entropy inequality are derived by adding a suitable dissipation term to the EC scheme with the WENO reconstruction of the scaled entropy variables in order to suppress the numerical oscillations of the EC schemes. After that, the semi-discrete schemes are integrated in time by using the high-order strong stability preserving explicit Runge-Kutta schemes to obtain the fully-discrete high-order well-balanced schemes. The ES property of the Lax-Friedrichs flux is also proved and then the positivity-preserving ES schemes are studied by using the positivity-preserving flux limiter. Finally, extensive numerical tests are conducted to validate the accuracy, the well-balanced, ES and positivity-preserving properties, and the ability to capture discontinuities of our schemes.
Tuan Anh Dao
,Ken Mattsson
,Murtazo Nazarov
.
(2021)
.
"Energy stable and accurate coupling of finite element methods and finite difference methods"
.
Tuan Anh Dao
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا