Do you want to publish a course? Click here

Summation-by-parts approximations of the second derivative: Pseudoinverses of singular operators and revisiting the sixth order accurate narrow-stencil operator

116   0   0.0 ( 0 )
 Added by Siyang Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider finite difference approximations of the second derivative, exemplified in Poissons equation, the heat equation and the wave equation. The finite difference operators satisfy a summation-by-parts property, which mimics the integration-by-parts. Since the operators approximate the second derivative, they are singular by construction. To impose boundary conditions, these operators are modified using Simultaneous Approximation Terms. This makes the modified matrices non-singular, for most choices of boundary conditions. Recently, inverses of such matrices were derived. However, when considering Neumann boundary conditions on both boundaries, the modified matrix is still singular. For such matrices, we have derived an explicit expression for the Moore-Penrose pseudoinverse, which can be used for solving elliptic problems and some time-dependent problems. The condition for this new pseudoinverse to be valid, is that the modified matrix does not have more than one zero eigenvalue. We have reconstructed the sixth order accurate narrow-stencil operator with a free parameter and show that more than one zero eigenvalue can occur. We have performed a detailed analysis on the free parameter to improve the properties of the second derivative operator. We complement the derivations by numerical experiments to demonstrate the improvements of the new second derivative operator.



rate research

Read More

In this work, new finite difference schemes are presented for dealing with the upper-convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equation of the popular viscoelastic models, is reformulated in order to obtain approximations of second-order in time for solving a simplified constitutive equation in one and two dimensions. The theoretical analysis of the truncation errors of the methods takes into account the linear and quadratic interpolation operators based on a Lagrangian framework. Numerical experiments illustrating the theoretical results for the model equation defined in one and two dimensions are included. Finally, the finite difference approximations of second-order in time are also applied for solving a two-dimensional Oldroyd-B constitutive equation subjected to a prescribed velocity field at different Weissenberg numbers.
We develop an energy-based finite difference method for the wave equation in second order form. The spatial discretization satisfies a summation-by-parts (SBP) property. With boundary conditions and material interface conditions imposed weakly by the simultaneous-approximation-term (SAT) method, we derive energy estimates for the semi-discretization. In addition, error estimates are derived by the normal mode analysis. The energy-based discretization does not use any mesh-dependent parameter, even in the presence of Dirichlet boundary conditions and material interfaces. Furthermore, similar to upwind discontinuous Galerkin methods, numerical dissipation can be added to the discretization through the boundary conditions. We present numerical experiments that verify convergence and robustness of the proposed method.
We present a hybridization technique for summation-by-parts finite difference methods with weak enforcement of interface and boundary conditions for second order, linear elliptic partial differential equations. The method is based on techniques from the hybridized discontinuous Galerkin literature where local and global problems are defined for the volume and trace grid points, respectively. By using a Schur complement technique the volume points can be eliminated, which drastically reduces the system size. We derive both the local and global problems, and show that the linear systems that must be solved are symmetric positive definite. The theoretical stability results are confirmed with numerical experiments as is the accuracy of the method.
122 - Chun Liu , Cheng Wang , Yiwei Wang 2021
A second-order accurate in time, positivity-preserving, and unconditionally energy stable operator splitting numerical scheme is proposed and analyzed for the system of reaction-diffusion equations with detailed balance. The scheme is designed based on an energetic variational formulation, in which the reaction part is reformulated in terms of the reaction trajectory, and both the reaction and diffusion parts dissipate the same free energy. At the reaction stage, the reaction trajectory equation is approximated by a second-order Crank-Nicolson type method. The unique solvability, positivity-preserving, and energy-stability are established based on a convexity analysis. In the diffusion stage, an exact integrator is applied if the diffusion coefficients are constant, and a Crank-Nicolson type scheme is applied if the diffusion process becomes nonlinear. In either case, both the positivity-preserving property and energy stability could be theoretically established. Moreover, a combination of the numerical algorithms at both stages by the Strang splitting approach leads to a second-order accurate, structure-preserving scheme for the original reaction-diffusion system. Numerical experiments are presented, which demonstrate the accuracy of the proposed scheme.
This paper extends the second-order accurate BGK finite volume schemes for the ultra-relativistic flow simulations [5] to the 1D and 2D special relativistic hydrodynamics with the Synge equation of state. It is shown that such 2D schemes are very time-consuming due to the moment integrals (triple integrals) so that they are no longer practical. In view of this, the simplified BGK (sBGK) schemes are presented by removing some terms in the approximate nonequilibrium distribution at the cell interface for the BGK scheme without loss of accuracy. They are practical because the moment integrals of the approximate distribution can be reduced to the single integrals by some coordinate transformations. The relations between the left and right states of the shock wave, rarefaction wave, and contact discontinuity are also discussed, so that the exact solution of the 1D Riemann problem could be derived and used for the numerical comparisons. Several numerical experiments are conducted to demonstrate that the proposed gas-kinetic schemes are accurate and stable. A comparison of the sBGK schemes with the BGK scheme in one dimension shows that the former performs almost the same as the latter in terms of the accuracy and resolution, but is much more efficiency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا