No Arabic abstract
Measurement scenarios containing events with relations of exclusivity represented by pentagons, heptagons, nonagons, etc., or their complements are the only ones in which quantum probabilities cannot be described classically. Interestingly, quantum theory predicts that the maximum values for any of these graphs cannot be achieved in Bell inequality scenarios. With the exception of the pentagon, this prediction remained experimentally unexplored. Here we test the quantum maxima for the heptagon and the complement of the heptagon using three- and five-dimensional quantum states, respectively. In both cases, we adopt two different encodings: linear transverse momentum and orbital angular momentum of single photons. Our results exclude maximally noncontextual hidden-variable theories and are in good agreement with the maxima predicted by quantum theory.
Noncontextuality inequalities are usually derived from the distinguishability properties of quantum states, i.e. their orthogonality. Here, we show that antidistinguishability can also be used to derive noncontextuality inequalities. The Yu-Oh 13 ray noncontextuality inequality can be re-derived and generalized as an instance of our antidistinguishability method. For some sets of states, the antidistinguishability method gives tighter bounds on noncontextual models than just considering orthogonality, and the Hadamard states provide an example of this. We also derive noncontextuality inequalities based on mutually unbiased bases and symmetric informationally complete POVMs. Antidistinguishability based inequalities were initially discovered as overlap bounds for the reality of the quantum state. Our main contribution here is to show that they are also noncontextuality inequalities.
Network motifs are small building blocks of complex networks. Statistically significant motifs often perform network-specific functions. However, the precise nature of the connection between motifs and the global structure and function of networks remains elusive. Here we show that the global structure of some real networks is statistically determined by the probability of connections within motifs of size at most 3, once this probability accounts for node degrees. The connectivity profiles of node triples in these networks capture all their local and global properties. This finding impacts methods relying on motif statistical significance, and enriches our understanding of the elementary forces that shape the structure of complex networks.
A new theory-independent noncontextuality inequality is presented [Phys. Rev. Lett. 115, 110403 (2015)] based on Kochen-Specker (KS) set without imposing the assumption of determinism. By proposing novel noncontextuality inequalities, we show that such result can be generalized from KS set to the noncontextuality inequalities not only for state-independent but also for state-dependent scenario. The YO-13 ray and $n$ cycle ray are considered as examples.
The power of quantum computers relies on the capability of their components to maintain faithfully and process accurately quantum information. Since this property eludes classical certification methods, fundamentally new protocols are required to guarantee that elementary components are suitable for quantum computation. These protocols must be device-independent, that is, they cannot rely on a particular physical description of the actual implementation if one is to qualify a block for all possible usages. Bells theorem has been proposed to certify, in a device-independent way, blocks either producing or measuring quantum states. In this manuscript, we provide the missing piece: a method based on Bells theorem to certify coherent operations such as storage, processing and transfer of quantum information. This completes the set of tools needed to certify all building blocks of a quantum computer. Our method is robust to experimental imperfections, and so can be readily used to certify that todays quantum devices are qualified for usage in future quantum computers.
Quantum Darwinism proposes that the proliferation of redundant information plays a major role in the emergence of objectivity out of the quantum world. Is this kind of objectivity necessarily classical? We show that if one takes Spekkens notion of noncontextuality as the notion of classicality and the approach of Brand~{a}o, Piani and Horodecki to quantum Darwinism, the answer to the above question is `yes, if the environment encodes sufficiently well the proliferated information. Moreover, we propose a threshold on this encoding, above which one can unambiguously say that classical objectivity has emerged under quantum Darwinism.