Do you want to publish a course? Click here

Comment on Quantum Time Crystals from Hamiltonians with Long-Range Interactions

99   0   0.0 ( 0 )
 Added by Vedika Khemani
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a recent paper (Phys. Rev. Lett. 123, 210602), Kozin and Kyriienko claim to realize genuine ground state time crystals by studying models with long-ranged and infinite-body interactions. Here we point out that their models are doubly problematic: they are unrealizable ${it and}$ they violate well established principles for defining phases of matter. Indeed with infinite body operators allowed, almost all quantum systems are time crystals. In addition, one of their models is highly unstable and another amounts to isolating, via fine tuning, a single degree of freedom in a many body system--allowing for this elevates the pendulum of Galileo and Huygens to a genuine time crystal.



rate research

Read More

In the note by Khemani et al. [arXiv:2001.11037] the authors express conceptual disagreement with our recent paper on quantum time crystals [Phys. Rev. Lett. 123, 210602]. They criticise the idealized nature of the considered quantum time crystal, and make several points about properties of Hamiltonians presented in our work. In this reply we answer one-by-one all questions raised in the discussion. As for the ideological dispute, it brightly highlights a bizarre nature of time crystalline order in closed quantum systems, and we offer a different vision for the development of the field.
Time crystals correspond to a phase of matter where time-translational symmetry (TTS) is broken. Up to date, they are well studied in open quantum systems, where external drive allows to break discrete TTS, ultimately leading to Floquet time crystals. At the same time, genuine time crystals for closed quantum systems are believed to be impossible. In this study we propose a form of a Hamiltonian for which the unitary dynamics exhibits the time crystalline behavior and breaks continuous TTS. This is based on spin-1/2 many-body Hamiltonian which has long-range multispin interactions in the form of spin strings, thus bypassing previously known no-go theorems. We show that quantum time crystals are stable to local perturbations at zero temperature. Finally, we reveal the intrinsic connection between continuous and discrete TTS, thus linking the two realms.
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two types of gapped regimes, where correlation functions decay exponentially at short range and algebraically at long range ($alpha > 1$) or purely algebraically ($alpha < 1$). Most interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for sufficiently small $alpha$. This is accompanied by a violation of the area law for the entanglement entropy in large parts of the phase diagram in the presence of a gap, and can be detected via the dynamics of entanglement following a quench. Some of these features may be relevant for current experiments with cold atomic ions.
119 - Zehan Li , Sayan Choudhury , 2021
Spin ensembles coupled to optical cavities provide a powerful platform for engineering synthetic quantum matter. Recently, we demonstrated that cavity mediated infinite range interactions can induce fast scrambling in a Heisenberg $XXZ$ spin chain (Phys. Rev. Research {bf 2}, 043399 (2020)). In this work, we analyze the kaleidoscope of quantum phases that emerge in this system from the interplay of these interactions. Employing both analytical spin-wave theory as well as numerical DMRG calculations, we find that there is a large parameter regime where the continuous $U(1)$ symmetry of this model is spontaneously broken and the ground state of the system exhibits $XY$ order. This kind of symmetry breaking and the consequent long range order is forbidden for short range interacting systems by the Mermin-Wagner theorem. Intriguingly, we find that the $XY$ order can be induced by even an infinitesimally weak infinite range interaction. Furthermore, we demonstrate that in the $U(1)$ symmetry broken phase, the half chain entanglement entropy violates the area law logarithmically. Finally, we discuss a proposal to verify our predictions in state-of-the-art quantum emulators.
We study the eigenstate properties of a nonintegrable spin chain that was recently realized experimentally in a Rydberg-atom quantum simulator. In the experiment, long-lived coherent many-body oscillations were observed only when the system was initialized in a particular product state. This pronounced coherence has been attributed to the presence of special scarred eigenstates with nearly equally-spaced energies and putative nonergodic properties despite their finite energy density. In this paper we uncover a surprising connection between these scarred eigenstates and low-lying quasiparticle excitations of the spin chain. In particular, we show that these eigenstates can be accurately captured by a set of variational states containing a macroscopic number of magnons with momentum $pi$. This leads to an interpretation of the scarred eigenstates as finite-energy-density condensates of weakly interacting $pi$-magnons. One natural consequence of this interpretation is that the scarred eigenstates possess long-range order in both space and time, providing a rare example of the spontaneous breaking of continuous time-translation symmetry. We verify numerically the presence of this space-time crystalline order and explain how it is consistent with established no-go theorems precluding its existence in ground states and at thermal equilibrium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا