No Arabic abstract
Time crystals correspond to a phase of matter where time-translational symmetry (TTS) is broken. Up to date, they are well studied in open quantum systems, where external drive allows to break discrete TTS, ultimately leading to Floquet time crystals. At the same time, genuine time crystals for closed quantum systems are believed to be impossible. In this study we propose a form of a Hamiltonian for which the unitary dynamics exhibits the time crystalline behavior and breaks continuous TTS. This is based on spin-1/2 many-body Hamiltonian which has long-range multispin interactions in the form of spin strings, thus bypassing previously known no-go theorems. We show that quantum time crystals are stable to local perturbations at zero temperature. Finally, we reveal the intrinsic connection between continuous and discrete TTS, thus linking the two realms.
In the note by Khemani et al. [arXiv:2001.11037] the authors express conceptual disagreement with our recent paper on quantum time crystals [Phys. Rev. Lett. 123, 210602]. They criticise the idealized nature of the considered quantum time crystal, and make several points about properties of Hamiltonians presented in our work. In this reply we answer one-by-one all questions raised in the discussion. As for the ideological dispute, it brightly highlights a bizarre nature of time crystalline order in closed quantum systems, and we offer a different vision for the development of the field.
In a recent paper (Phys. Rev. Lett. 123, 210602), Kozin and Kyriienko claim to realize genuine ground state time crystals by studying models with long-ranged and infinite-body interactions. Here we point out that their models are doubly problematic: they are unrealizable ${it and}$ they violate well established principles for defining phases of matter. Indeed with infinite body operators allowed, almost all quantum systems are time crystals. In addition, one of their models is highly unstable and another amounts to isolating, via fine tuning, a single degree of freedom in a many body system--allowing for this elevates the pendulum of Galileo and Huygens to a genuine time crystal.
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide. Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space. This indicates the Bethe ansatz breakdown and the onset of quantum chaos, in stark contrast to the conventional integrable problem of two interacting bosons in a box. We identify the long-range waveguide-mediated coupling between the atoms as the key ingredient of chaos and nonintegrability. Our results provide new insights in the interplay between order, chaos and localization in many-body quantum systems and can be tested in state-of-the-art setups of waveguide quantum electrodynamics.
We study - experimentally, theoretically, and numerically - nonlinear excitations in lattices of magnets with long-range interactions. We examine breather solutions, which are spatially localized and periodic in time, in a chain with algebraically-decaying interactions. It was established two decades ago [S. Flach, Phys. Rev. E 58, R4116 (1998)] that lattices with long-range interactions can have breather solutions in which the spatial decay of the tails has a crossover from exponential to algebraic decay. In this Letter, we revisit this problem in the setting of a chain of repelling magnets with a mass defect and verify, both numerically and experimentally, the existence of breathers with such a crossover.
A time crystal is a macroscopic quantum system in periodic motion in its ground state, stable only if isolated from energy exchange with the environment. For this reason, coupling separate time crystals is challenging, and time crystals in a dynamic environment have yet not been studied. In our experiments, two coupled time crystals made of spin-wave quasiparticles (magnons) form a macroscopic two-level system. The two levels evolve in time as determined intrinsically by a nonlinear feedback. Magnons move from the ground level to the excited level driven by the Landau-Zener effect, combined with Rabi population oscillations. We thus demonstrate how to arrange spontaneous dynamics between interacting time crystals. Our experiments allow access to every aspect and detail of the interaction in a single run of the experiment, inviting technological exploitation-- potentially even at room temperature.