Do you want to publish a course? Click here

Kitaev chains with long-range pairing

151   0   0.0 ( 0 )
 Added by Davide Vodola
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two types of gapped regimes, where correlation functions decay exponentially at short range and algebraically at long range ($alpha > 1$) or purely algebraically ($alpha < 1$). Most interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for sufficiently small $alpha$. This is accompanied by a violation of the area law for the entanglement entropy in large parts of the phase diagram in the presence of a gap, and can be detected via the dynamics of entanglement following a quench. Some of these features may be relevant for current experiments with cold atomic ions.



rate research

Read More

In a recent paper (Phys. Rev. Lett. 123, 210602), Kozin and Kyriienko claim to realize genuine ground state time crystals by studying models with long-ranged and infinite-body interactions. Here we point out that their models are doubly problematic: they are unrealizable ${it and}$ they violate well established principles for defining phases of matter. Indeed with infinite body operators allowed, almost all quantum systems are time crystals. In addition, one of their models is highly unstable and another amounts to isolating, via fine tuning, a single degree of freedom in a many body system--allowing for this elevates the pendulum of Galileo and Huygens to a genuine time crystal.
We consider the Kitaev chain model with finite and infinite range in the hopping and pairing parameters, looking in particular at the appearance of Majorana zero energy modes and massive edge modes. We study the system both in the presence and in the absence of time reversal symmetry, by means of topological invariants and exact diagonalization, disclosing very rich phase diagrams. In particular, for extended hopping and pairing terms, we can get as many Majorana modes at each end of the chain as the neighbors involved in the couplings. Finally we generalize the transfer matrix approach useful to calculate the zero-energy Majorana modes at the edges for a generic number of coupled neighbors.
We consider $N$-particle generalizations of $eta$-paring states in a chain of $N$-component fermions and show that these states are exact (high-energy) eigenstates of an extended SU($N$) Hubbard model. We compute the singlet correlation function of the states and find that its behavior is qualitatively different for even and odd $N$. When $N$ is even, these states exhibit off-diagonal long-range order in $N$-particle reduced density matrix. On the other hand, when $N$ is odd, the singlet correlation function decays exponentially toward the other end of the chain but shows a revival at the other end. Finally, we prove that these states are the unique ground states of suitably tailored Hamiltonians.
Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the thermalization in a periodically-driven generalized Sachdev-Ye-Kitaev (SYK)-model, which realizes a crossover from a heavy Fermi liquid (FL) to a non-Fermi liquid (NFL) at a tunable energy scale. Developing an exact field theoretic approach, we determine two distinct regimes in the heating dynamics. While the NFL heats exponentially and thermalizes rapidly, we report that the presence of quasi-particles in the heavy FL obstructs heating and thermalization over comparatively long time scales. Prethermal high-frequency dynamics and possible experimental realizations of non-equilibrium SYK physics are discussed as well.
We describe a method to probe the quantum phase transition between the short-range topological phase and the long-range topological phase in the superconducting Kitaev chain with long-range pairing, both exhibiting subgap modes localized at the edges. The method relies on the effects of the finite mass of the subgap edge modes in the long-range regime (which survives in the thermodynamic limit) on the single-particle scattering coefficients through the chain connected to two normal leads. Specifically, we show that, when the leads are biased at a voltage V with respect to the superconducting chain, the Fano factor is either zero (in the short-range correlated phase) or 2e (in the long-range correlated phase). As a result, we find that the Fano factor works as a directly measurable quantity to probe the quantum phase transition between the two phases. In addition, we note a remarkable critical fractionalization effect in the Fano factor, which is exactly equal to e along the quantum critical line. Finally, we note that a dual implementation of our proposed device makes it suitable as a generator of large-distance entangled two-particle states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا