Do you want to publish a course? Click here

Helimagnetic Structure and Heavy-Fermion-Like Behavior in the Vicinity of the Quantum Critical Point in Mn$_3$P

72   0   0.0 ( 0 )
 Added by Hisashi Kotegawa
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Antiferromagnet Mn$_3$P with Neel temperature $T_N=30$ K is composed of Mn-tetrahedrons and zigzag chains formed by three inequivalent Mn sites. Due to the nearly frustrated lattice with many short Mn-Mn bonds, competition of the exchange interactions is expected. We here investigate the magnetic structure and physical properties including pressure effect in single crystals of this material, and reveal a complex yet well-ordered helimagnetic structure. The itinerant character of this materials is strong, and the ordered state with small magnetic moments is easily suppressed under pressure, exhibiting a quantum critical point at $sim1.6$ GPa. The remarkable mass renormalization, even in the ordered state, and an incoherent-coherent crossover in the low-temperature region, characterize an unusual electronic state in Mn$_3$P, which is most likely effected by the underlying frustration effect.



rate research

Read More

We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi$_3$. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Neel temperature. At $unit{23.6}{kbar}$, the ordered magnetic moments are fully suppressed via a second-order phase transition, and $T_{rm{N}}$ is zero. Thus, we directly observed the quantum critical point at $unit{23.6}{kbar}$ hidden inside the superconducting phase of CeRhSi$_3$.
A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c^*, we have shown that the energy width Gamma(k_3), i.e., inverse correlation time, depends on temperature as Gamma(k_3) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +- 0.1 proves that the QCP is controlled by that of the itinerant antiferromagnet.
We report detailed very low temperature resistivity measurements on the heavy fermion compounds Ce_{1-x}La_{x}CoIn5 (x=0 and x=0.01), with current applied in two crystallographic directions [100] (basal plane) and [001] (perpendicular to the basal plane) under magnetic field applied in the [001] or [011] direction. We found a Fermi liquid (rho propto T^{2}) ground state, in all cases, for fields above the superconducting upper critical field. We discuss the possible location of a field induced quantum critical point with respect to Hc2(0), and compare our measurements with the previous reports in order to give a clear picture of the experimental status on this long debated issue.
110 - Alba Theumann , B. Coqblin 2004
The Kondo-Spin Glass competition is studied in a theoretical model of a Kondo lattice with an intra-site Kondo type exchange interaction treated within the mean field approximation, an inter-site quantum Ising exchange interaction with random couplings among localized spins and an additional transverse field in the x direction, which represents a simple quantum mechanism of spin flipping. We obtain two second order transition lines from the spin-glass state to the paramagnetic one and then to the Kondo state. For a reasonable set of the different parameters, the two second order transition lines do not intersect and end in two distinct QCP.
We present a comprehensive investigation of the evolution of helimagnetic correlations in Mn$_{1-x}$Fe$_x$Si with increasing doping. By combining polarised neutron scattering and high resolution Neutron Spin Echo spectroscopy we investigate three samples with $x$=0.09, 0.11 and 0.14, i.e. with compositions on both sides of the concentration $x^* sim 0.11$ where the helimagnetic Bragg peaks disappear and between $x^*$ and the quantum critical concentration $x_C sim 0.17$, where $T_C$ vanishes. We find that the abrupt disappearance of the long range helical periodicity at $x^*$, does not affect the precursor fluctuating correlations. These build up with decreasing temperature in a similar way as for the parent compound MnSi. Also the dynamics bears strong similarities to MnSi. The analysis of our results indicates that frustration, possibly due to achiral RKKY interactions, increases with increasing Fe doping. We argue that this effect explains both the expansion of the precursor phase with increasing $x$ and the abrupt disappearance of long range helimagnetic periodicity at $x^*$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا