Do you want to publish a course? Click here

Quantum Critical Point in the Spin Glass-Kondo Transition in Heavy Fermion Systems

111   0   0.0 ( 0 )
 Added by Alba Theumann
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kondo-Spin Glass competition is studied in a theoretical model of a Kondo lattice with an intra-site Kondo type exchange interaction treated within the mean field approximation, an inter-site quantum Ising exchange interaction with random couplings among localized spins and an additional transverse field in the x direction, which represents a simple quantum mechanism of spin flipping. We obtain two second order transition lines from the spin-glass state to the paramagnetic one and then to the Kondo state. For a reasonable set of the different parameters, the two second order transition lines do not intersect and end in two distinct QCP.



rate research

Read More

A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c^*, we have shown that the energy width Gamma(k_3), i.e., inverse correlation time, depends on temperature as Gamma(k_3) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +- 0.1 proves that the QCP is controlled by that of the itinerant antiferromagnet.
A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength $J_{K}$ and an interlattice quantum Ising interaction in the presence of a transverse field $Gamma$. The interlattice coupling is a random Gaussian distributed variable (with average $-2J_0/N$ and variance $32 J^{2}/N$) while the $Gamma$ field is introduced as a quantum mechanism to produce spin flipping. The path integral formalism is used to study this fermionic problem where the spin operators are represented by bilinear combinations of Grassmann fields. The disorder is treated within the framework of the replica trick. The free energy and the order parameters of the problem are obtained by using the static ansatz and by choosing both $J_0/J$ and $Gamma/J approx (J_k/J)^2$ to allow, as previously, a better comparison with the experimental findings. The results indicate the presence of a SG solution at low $J_K/J$ and for temperature $T<T_{f}$ ($T_{f}$ is the freezing temperature). When $J_K/J$ is increased, a mixed phase AF+SG appears, then an AF solution and finally a Kondo state is obtained for high values of $J_{K}/J$. Moreover, the behaviors of the freezing and Neel temperatures are also affected by the relationship between $J_{K}$ and the transverse field $Gamma$. The first one presents a slight decrease while the second one decreases towards a Quantum Critical Point (QCP). The obtained phase diagram has the same sequence as the experimental one for $Ce_{2}Au_{1-x}Co_{x}Si_{3}$, if $J_{K}$ is assumed to increase with $x$, and in addition, it also shows a qualitative agreement concerning the behavior of the freezing and the Neel temperatures.
We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi$_3$. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Neel temperature. At $unit{23.6}{kbar}$, the ordered magnetic moments are fully suppressed via a second-order phase transition, and $T_{rm{N}}$ is zero. Thus, we directly observed the quantum critical point at $unit{23.6}{kbar}$ hidden inside the superconducting phase of CeRhSi$_3$.
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy fermion semimetal Ce$_3$Bi$_4$Pd$_3$. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations, and open up a new avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
We propose a static auxiliary field approximation to study the hybridization physics of Kondo systems without the sign problem and use the mutual information to measure the intersite hybridization correlations. Our method takes full account of the spatial fluctuations of the hybridization fields at all orders and overcomes the artificial (first-order) phase transition predicted in the mean-field approximation. When applied to the two-impurity Kondo model, it reveals a logarithmically divergent amplitude mutual information near the so-called Varma-Jones fixed point and a large phase mutual information manifesting the development of intersite phase coherence in the Kondo regime, with observable influences on physical properties. These highlight the importance of hybridization fluctuations and confirm the mutual information as a useful tool to explore the hybridization physics in Kondo systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا