Do you want to publish a course? Click here

Characterization of Sr2RuO4 Josephson junctions made of epitaxial films

100   0   0.0 ( 0 )
 Added by Masaki Uchida
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied fundamental properties of weak-link Sr2RuO4/Sr2RuO4 Josephson junctions fabricated by making a narrow constriction on superconducting Sr2RuO4 films through laser micro-patterning. The junctions show a typical overdamped behavior with much higher critical current density, compared with those previously reported for bulk Sr2RuO4/s-wave superconductor junctions. Observed magnetic field and temperature dependences of the Josephson critical current suggest that the chiral p-wave is unlikely for the superconducting symmetry, encouraging further theoretical calculations of the Sr2RuO4/Sr2RuO4 type junctions.

rate research

Read More

155 - M. Uchida , M. Ide , H. Watanabe 2019
We report growth of superconducting Sr2RuO4 films by oxide molecular beam epitaxy (MBE). Careful tuning of the Ru flux with an electron beam evaporator enables us to optimize growth conditions including the Ru/Sr flux ratio and also to investigate stoichiometry effects on the structural and transport properties. The highest onset transition temperature of about 1.1 K is observed for films grown in a slightly Ru-rich flux condition in order to suppress Ru deficiency. The realization of superconducting Sr2RuO4 films via oxide MBE opens up a new route to study the unconventional superconductivity of this material.
84 - M. Uchida , M. Ide , M. Kawamura 2019
We report large enhancement of upper critical field Hc2 observed in superconducting Sr2RuO4 thin films. Through dimensional crossover approaching two dimensions, Hc2 except the in-plane field direction is dramatically enhanced compared to bulks, following a definite relation distinct from bulk one between Hc2 and the transition temperature. The anomalous enhancement of Hc2 is highly suggestive of important changes of the superconducting properties, possibly accompanied with rotation of the triplet d-vector. Our findings will become a crucial step to further explore exotic properties by employing Sr2RuO4 thin films.
Superconductor-Ferromagnet-Superconductor (S-F-S) Josephson junctions were fabricated by making a narrow cut through a S-F double layer using direct writing by Focused Ion Beam (FIB). Due to a high resolution (spot size smaller than 10 nm) of FIB, junctions with a small separation between superconducting electrodes ($leq$ 30 nm) can be made. Such a short distance is sufficient for achieving a considerable proximity coupling through a diluted CuNi ferromagnet. We have successfully fabricated and studied S-F-S (Nb-CuNi-Nb) and S-S-S (Nb-Nb/CuNi-Nb) junctions. Junctions exhibit clear Fraunhofer modulation of the critical current as a function of magnetic field, indicating good uniformity of the cut. By changing the depth of the cut, junctions with the $I_c R_n$ product ranging from 0.5 mV to $sim 1mu $V were fabricated.
The cuprate superconductors exhibit ubiquitous instabilities toward charge-ordered states. These unusual electronic states break the spatial symmetries of the host crystal, and have been widely appreciated as essential ingredients for constructing a theory for high-temperature superconductivity in cuprates. Here we report real-space imaging of the doping-dependent charge orders in the epitaxial thin films of a canonical cuprate compound La2-xSrxCuO4 using scanning tunneling microscopy. As the films are moderately doped, we observe a crossover from incommensurate to commensurate (4a0, where a0 is the Cu-O-Cu distance) stripes. Furthermore, at lower and higher doping levels, the charge orders occur in the form of distorted Wigner crystal and grid phase of crossed vertical and horizontal stripes. We discuss how the charge orders are stabilized, and their interplay with superconductivity.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an insulating barrier I. We calculate the relationship between Josephson current and phase difference. At temperatures close to critical, calculations are performed analytically in the frame of the Ginsburg-Landau equations. At low temperatures numerical method is developed to solve selfconsistently the Usadel equations in the structure. We demonstrate that SIsFS junctions have several distinct regimes of supercurrent transport and we examine spatial distributions of the pair potential across the structure in different regimes. We study the crossover between these regimes which is caused by shifting the location of a weak link from the tunnel barrier I to the F-layer. We show that strong deviations of the CPR from sinusoidal shape occur even in a vicinity of Tc, and these deviations are strongest in the crossover regime. We demonstrate the existence of temperature-induced crossover between 0 and pi states in the contact and show that smoothness of this transition strongly depends on the CPR shape.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا