No Arabic abstract
We report large enhancement of upper critical field Hc2 observed in superconducting Sr2RuO4 thin films. Through dimensional crossover approaching two dimensions, Hc2 except the in-plane field direction is dramatically enhanced compared to bulks, following a definite relation distinct from bulk one between Hc2 and the transition temperature. The anomalous enhancement of Hc2 is highly suggestive of important changes of the superconducting properties, possibly accompanied with rotation of the triplet d-vector. Our findings will become a crucial step to further explore exotic properties by employing Sr2RuO4 thin films.
We report a highly unusual angular variation of the upper critical field (H_c2) in epitaxial superlattices CeCoIn_5(n)/YbCoIn_5(5), formed by alternating layers of n and a 5 unit-cell thick heavy-fermion superconductor CeCoIn_5 with a strong Pauli effect and normal metal YbCoIn_5, respectively. For the n=3 superlattice, H_{c2}(theta) changes smoothly as a function of the field angle theta. However, close to the superconducting transition temperature, H_{c2}(theta) exhibits a cusp near the parallel field (theta=0 deg). This cusp behavior disappears for n=4 and 5 superlattices. This sudden disappearance suggests the relative dominance of the orbital depairing effect in the n=3 superlattice, which may be due to the suppression of the Pauli effect in a system with local inversion symmetry breaking. Taking into account the temperature dependence of H_{c2}(theta) as well, our results suggest that some exotic superconducting states, including a helical superconducting state, might be realized at high magnetic fields.
We report growth of superconducting Sr2RuO4 films by oxide molecular beam epitaxy (MBE). Careful tuning of the Ru flux with an electron beam evaporator enables us to optimize growth conditions including the Ru/Sr flux ratio and also to investigate stoichiometry effects on the structural and transport properties. The highest onset transition temperature of about 1.1 K is observed for films grown in a slightly Ru-rich flux condition in order to suppress Ru deficiency. The realization of superconducting Sr2RuO4 films via oxide MBE opens up a new route to study the unconventional superconductivity of this material.
We have studied fundamental properties of weak-link Sr2RuO4/Sr2RuO4 Josephson junctions fabricated by making a narrow constriction on superconducting Sr2RuO4 films through laser micro-patterning. The junctions show a typical overdamped behavior with much higher critical current density, compared with those previously reported for bulk Sr2RuO4/s-wave superconductor junctions. Observed magnetic field and temperature dependences of the Josephson critical current suggest that the chiral p-wave is unlikely for the superconducting symmetry, encouraging further theoretical calculations of the Sr2RuO4/Sr2RuO4 type junctions.
FeSe is a unique superconductor that can be manipulated to enhance its superconductivity using different routes while its monolayer form grown on different substrates reaches a record high temperature for a two-dimensional system. In order to understand the role played by the substrate and the reduced dimensionality on superconductivity, we examine the superconducting properties of exfoliated FeSe thin flakes by reducing the thickness from bulk down towards 9 nm. Magnetotransport measurements performed in magnetic fields up to 16T and temperatures down to 2K help to build up complete superconducting phase diagrams of different thickness flakes. While the thick flakes resemble the bulk behaviour, by reducing the thickness the superconductivity of FeSe flakes is suppressed. In the thin limit we detect signatures of a crossover towards two-dimensional behaviour from the observation of the vortex-antivortex unbinding transition and strongly enhanced anisotropy. Our study provides detailed insights into the evolution of the superconducting properties from three-dimensional bulk behaviour towards the two-dimensional limit of FeSe in the absence of a dopant substrate.
Critical fields of four MgB2 thin films with a normal state resistivity ranging from 5 to 50 mWcm and Tc from 29.5 to 38.8 K were measured up to 28 T. Hc2(T) curves present a linear behavior towards low temperatures. Very high critical field values have been found, up to 24 T along the c-axis and 57 T in the basal plane not depending on the normal state resistivity values. In this paper, critical fields will be analyzed taking into account the multiband nature of MgB2; we will show that resistivity and upper critical fields can be ascribed to different scattering mechanisms.