Do you want to publish a course? Click here

Real-space observation of charge ordering in epitaxial La2-xSrxCuO4 films

91   0   0.0 ( 0 )
 Added by Can-Li Song Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cuprate superconductors exhibit ubiquitous instabilities toward charge-ordered states. These unusual electronic states break the spatial symmetries of the host crystal, and have been widely appreciated as essential ingredients for constructing a theory for high-temperature superconductivity in cuprates. Here we report real-space imaging of the doping-dependent charge orders in the epitaxial thin films of a canonical cuprate compound La2-xSrxCuO4 using scanning tunneling microscopy. As the films are moderately doped, we observe a crossover from incommensurate to commensurate (4a0, where a0 is the Cu-O-Cu distance) stripes. Furthermore, at lower and higher doping levels, the charge orders occur in the form of distorted Wigner crystal and grid phase of crossed vertical and horizontal stripes. We discuss how the charge orders are stabilized, and their interplay with superconductivity.



rate research

Read More

The magnetic field affects the motion of electrons and the orientation of spins in solids, but it is believed to have little impact on the crystal structure. This common perception has been challenged recently by ferromagnetic shape-memory alloys, where the spin-lattice coupling is so strong that crystallographic axes even in a fixed sample are forced to rotate, following the direction of moments. One would, however, least expect any structural change to be induced in antiferromagnets where spins are antiparallel and give no net moment. Here we report on such unexpected magnetic shape-memory effects that take place ironically in one of the best-studied 2D antiferromagnets, La2-xSrxCuO4 (LSCO). We find that lightly-doped LSCO crystals tend to align their b axis along the magnetic field, and if the crystal orientation is fixed, this alignment occurs through the generation and motion of crystallographic twin boundaries. Both resistivity and magnetic susceptibility exhibit curious switching and memory effects induced by the crystal-axes rotation; moreover, clear kinks moving over the crystal surfaces allow one to watch the crystal rearrangement directly with a microscope or even bare eyes.
We have studied fundamental properties of weak-link Sr2RuO4/Sr2RuO4 Josephson junctions fabricated by making a narrow constriction on superconducting Sr2RuO4 films through laser micro-patterning. The junctions show a typical overdamped behavior with much higher critical current density, compared with those previously reported for bulk Sr2RuO4/s-wave superconductor junctions. Observed magnetic field and temperature dependences of the Josephson critical current suggest that the chiral p-wave is unlikely for the superconducting symmetry, encouraging further theoretical calculations of the Sr2RuO4/Sr2RuO4 type junctions.
107 - E. S. Bozin 1998
The local structure of La2-xSrxCuO4, for 0 < x < 0.30, has been investigated using the atomic pair distribution function (PDF) analysis of neutron powder diffraction data. The local octahedral tilts are studied to look for evidence of [110] symmetry (i.e., LTT-symmetry) tilts locally, even though the average tilts have [010] symmetry (i.e., LTO-symmetry) in these compounds. We argue that this observation would suggest the presence of local charge-stripe order. We show that the tilts are locally LTO in the undoped phase, in agreement with the average crystal structure. At non-zero doping the PDF data are consistent with the presence of local tilt disorder in the form of a mixture of LTO and LTT local tilt directions and a distribution of local tilt magnitudes. We present topological tilt models which qualitatively explain the origin of tilt disorder in the presence of charge stripes and show that the PDF data are well explained by such a mixture of locally small and large amplitude tilts.
148 - S. Y. Tan , Y. Fang , D. H. Xie 2015
The electronic structure of FeSe thin films grown on SrTiO3 substrate is studied by angle-resolved photoemission spectroscopy (ARPES). We reveal the existence of Dirac cone band dispersions in FeSe thin films thicker than 1 Unit Cell below the nematic transition temperature, whose apex are located -10 meV below Fermi energy. The evolution of Dirac cone electronic structure for FeSe thin films as function of temperature, thickness and cobalt doping is systematically studied. The Dirac cones are found to be coexisted with the nematicity in FeSe, disappear when nematicity is suppressed. Our results provide some indication that the spin degrees of freedom may play some kind of role in the nematicity of FeSe.
We present a volume-sensitive high-energy x-ray diffraction study of the underdoped cuprate high temperature superconductor La2-xSrxCuO4 (x = 0.12, Tc=27 K) in applied magnetic field. Bulk short-range charge stripe order with propagation vector q_ch = (0.231, 0, 0.5) is demonstrated to exist below T_ch = 85(10) K and shown to compete with superconductivity. We argue that bulk charge ordering arises from fluctuating stripes that become pinned near boundaries between orthorhombic twin domains.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا