No Arabic abstract
Gauge theories appear broadly in physics, ranging from the standard model of particle physics to long-wavelength descriptions of topological systems in condensed matter. However, systems with sign problems are largely inaccessible to classical computations and also beyond the current limitations of digital quantum hardware. In this work, we develop an analog approach to simulating gauge theories with an experimental setup that employs dipolar spins (molecules or Rydberg atoms). We consider molecules fixed in space and interacting through dipole-dipole interactions, avoiding the need for itinerant degrees of freedom. Each molecule represents either a site or gauge degree of freedom, and Gauss law is preserved by a direct and programmatic tuning of positions and internal state energies. This approach can be regarded as a form of analog systems programming and charts a path forward for near-term quantum simulation. As a first step, we numerically validate this scheme in a small-system study of U(1) quantum link models in (1+1) dimensions with link spin S = 1/2 and S = 1 and illustrate how dynamical phenomena such as string inversion and string breaking could be observed in near-term experiments. Our work brings together methods from atomic and molecular physics, condensed matter physics, high-energy physics, and quantum information science for the study of nonperturbative processes in gauge theories.
We present a suite of holographic quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems, which require far-fewer qubits than the number of spins being simulated. The algorithms exploit the equivalence between matrix-product states (MPS) and quantum channels, along with partial measurement and qubit re-use, in order to simulate a $D$-dimensional spin system using only a ($D$-1)-dimensional subset of qubits along with an ancillary qubit register whose size scales logarithmically in the amount of entanglement present in the simulated state. Ground states can either be directly prepared from a known MPS representation, or obtained via a holographic variational quantum eigensolver (holoVQE). Dynamics of MPS under local Hamiltonians for time $t$ can also be simulated with an additional (multiplicative) ${rm poly}(t)$ overhead in qubit resources. These techniques open the door to efficient quantum simulation of MPS with exponentially large bond-dimension, including ground-states of 2D and 3D systems, or thermalizing dynamics with rapid entanglement growth. As a demonstration of the potential resource savings, we implement a holoVQE simulation of the antiferromagnetic Heisenberg chain on a trapped-ion quantum computer, achieving within $10(3)%$ of the exact ground-state energy of an infinite chain using only a pair of qubits.
Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented - a classical simulation approach - applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.
Quantum-simulator hardware promises new insights into problems from particle and nuclear physics. A major challenge is to reproduce gauge invariance, as violations of this quintessential property of lattice gauge theories can have dramatic consequences, e.g., the generation of a photon mass in quantum electrodynamics. Here, we introduce an experimentally friendly method to protect gauge invariance in $mathrm{U}(1)$ lattice gauge theories against coherent errors in a controllable way. Our method employs only single-body energy-penalty terms, thus enabling practical implementations. As we derive analytically, some sets of penalty coefficients render undesired gauge sectors inaccessible by unitary dynamics for exponentially long times, and, for few-body error terms, with resources independent of system size. These findings constitute an exponential improvement over previously known results from energy-gap protection or perturbative treatments. In our method, the gauge-invariant subspace is protected by an emergent global symmetry, meaning it can be immediately applied to other symmetries. In our numerical benchmarks for continuous-time and digital quantum simulations, gauge protection holds for all calculated evolution times (up to $t>10^{10}/J$ for continuous time, with $J$ the relevant energy scale). Crucially, our gauge-protection technique is simpler to realize than the associated ideal gauge theory, and can thus be readily implemented in current ultracold-atom analog simulators as well as digital noisy intermediate scale quantum (NISQ) devices.
We demonstrate two simple theorems about squeezing induced by bilinear spin-spin interactions that conserve spin parity -- including a vast majority of quantum spin models implemented by state-of-the-art quantum simulators. In particular we show that squeezing captures the first form of quantum correlations which are produced: 1) at equilibrium, by adiabatically turning on the spin-spin interactions starting from a factorized state aligned with an external, arbitrary field; 2) away from equilibrium, by evolving unitarily the same state with the interacting Hamiltonian.
Quantum field theories are the cornerstones of modern physics, providing relativistic and quantum mechanical descriptions of physical systems at the most fundamental level. Simulating real-time dynamics within these theories remains elusive in classical computing. This provides a unique opportunity for quantum simulators, which hold the promise of revolutionizing our simulation capabilities. Trapped-ion systems are successful quantum-simulator platforms for quantum many-body physics and can operate in digital, or gate-based, and analog modes. Inspired by the progress in proposing and realizing quantum simulations of a number of relativistic quantum field theories using trapped-ion systems, and by the hybrid analog-digital proposals for simulating interacting boson-fermion models, we propose hybrid analog-digital quantum simulations of selected quantum field theories, taking recent developments to the next level. On one hand, the semi-digital nature of this proposal offers more flexibility in engineering generic model interactions compared with a fully-analog approach. On the other hand, encoding the bosonic fields onto the phonon degrees of freedom of the trapped-ion system allows a more efficient usage of simulator resources, and a more natural implementation of intrinsic quantum operations in such platforms. This opens up new ways for simulating complex dynamics of e.g., Abelian and non-Abelian gauge theories, by combining the benefits of digital and analog schemes.