Do you want to publish a course? Click here

Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach

84   0   0.0 ( 0 )
 Added by Zohreh Davoudi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum field theories are the cornerstones of modern physics, providing relativistic and quantum mechanical descriptions of physical systems at the most fundamental level. Simulating real-time dynamics within these theories remains elusive in classical computing. This provides a unique opportunity for quantum simulators, which hold the promise of revolutionizing our simulation capabilities. Trapped-ion systems are successful quantum-simulator platforms for quantum many-body physics and can operate in digital, or gate-based, and analog modes. Inspired by the progress in proposing and realizing quantum simulations of a number of relativistic quantum field theories using trapped-ion systems, and by the hybrid analog-digital proposals for simulating interacting boson-fermion models, we propose hybrid analog-digital quantum simulations of selected quantum field theories, taking recent developments to the next level. On one hand, the semi-digital nature of this proposal offers more flexibility in engineering generic model interactions compared with a fully-analog approach. On the other hand, encoding the bosonic fields onto the phonon degrees of freedom of the trapped-ion system allows a more efficient usage of simulator resources, and a more natural implementation of intrinsic quantum operations in such platforms. This opens up new ways for simulating complex dynamics of e.g., Abelian and non-Abelian gauge theories, by combining the benefits of digital and analog schemes.



rate research

Read More

Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented - a classical simulation approach - applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.
We show how engineered classical noise can be used to generate constrained Hamiltonian dynamics in atomic quantum simulators of many-body systems, taking advantage of the continuous Zeno effect. After discussing the general theoretical framework, we focus on applications in the context of lattice gauge theories, where imposing exotic, quasi-local constraints is usually challenging. We demonstrate the effectiveness of the scheme for both Abelian and non-Abelian gauge theories, and discuss how engineering dissipative constraints substitutes complicated, non-local interaction patterns by global coupling to laser fields.
229 - Kirill Boguslavski 2018
In recent years, there have been important advances in understanding the far-from-equilibrium dynamics in different physical systems. In ultra-relativistic heavy-ion collisions, the combination of different methods led to the development of a weak-coupling description of the early-time dynamics. The numerical observation of a classical universal attractor played a crucial role for this. Such attractors, also known as non-thermal fixed points (NTFPs), have been now predicted for different scalar and gauge theories. An important universal NTFP emerges in scalar theories modeling ultra-cold atoms, inflation or dark matter, and its scaling properties have been recently observed in an ultra-cold atom experiment. In this proceeding, recent progress in selected topics of the far-from-equilibrium evolution in these systems will be discussed. A new method to extract the spectral function numerically is a particularly promising tool to better understand their microscopic properties.
In recent years, there has been a significant progress in the development of digital quantum processors. The state-of-the-art quantum devices are imperfect, and fully-algorithmic fault-tolerant quantum computing is a matter of future. Until technology develops to the state with practical error correction, computational approaches other than the standard digital one can be used to avoid execution of the most noisy quantum operations. We demonstrate how a hybrid digital-analog approach allows simulating dynamics of a transverse-field Ising model without standard two-qubit gates, which are currently one of the most problematic building blocks of quantum circuits. We use qubit-qubit crosstalks (couplings) of IBM superconducting quantum processors to simulate Trotterized dynamics of spin clusters and then we compare the obtained results with the results of conventional digital computation based on two-qubit gates from the universal set. The comparison shows that digital-analog approach significantly outperforms standard digital approach for this simulation problem, despite of the fact that crosstalks in IBM quantum processors are small. We argue that the efficiency of digital-analog quantum computing can be improved with the help of more specialized processors, so that they can be used to efficiently implement other quantum algorithms. This indicates the prospect of a digital-to-analog strategy for near-term noisy intermediate-scale quantum computers.
Quantum computers have the potential to efficiently simulate the dynamics of many interacting quantum particles, a classically intractable task of central importance to fields ranging from chemistry to high-energy physics. However, precision and memory limitations of existing hardware severely limit the size and complexity of models that can be simulated with conventional methods. Here, we demonstrate and benchmark a new scalable quantum simulation paradigm--holographic quantum dynamics simulation--which uses efficient quantum data compression afforded by quantum tensor networks along with opportunistic mid-circuit measurement and qubit reuse to simulate physical systems that have far more quantum degrees of freedom than can be captured by the available number of qubits. Using a Honeywell trapped ion quantum processor, we simulate the non-integrable (chaotic) dynamics of the self-dual kicked Ising model starting from an entangled state of $32$ spins using at most $9$ trapped ion qubits, obtaining excellent quantitative agreement when benchmarking against dynamics computed directly in the thermodynamic limit via recently developed exact analytical techniques. These results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا