No Arabic abstract
We present a suite of holographic quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems, which require far-fewer qubits than the number of spins being simulated. The algorithms exploit the equivalence between matrix-product states (MPS) and quantum channels, along with partial measurement and qubit re-use, in order to simulate a $D$-dimensional spin system using only a ($D$-1)-dimensional subset of qubits along with an ancillary qubit register whose size scales logarithmically in the amount of entanglement present in the simulated state. Ground states can either be directly prepared from a known MPS representation, or obtained via a holographic variational quantum eigensolver (holoVQE). Dynamics of MPS under local Hamiltonians for time $t$ can also be simulated with an additional (multiplicative) ${rm poly}(t)$ overhead in qubit resources. These techniques open the door to efficient quantum simulation of MPS with exponentially large bond-dimension, including ground-states of 2D and 3D systems, or thermalizing dynamics with rapid entanglement growth. As a demonstration of the potential resource savings, we implement a holoVQE simulation of the antiferromagnetic Heisenberg chain on a trapped-ion quantum computer, achieving within $10(3)%$ of the exact ground-state energy of an infinite chain using only a pair of qubits.
Gauge theories appear broadly in physics, ranging from the standard model of particle physics to long-wavelength descriptions of topological systems in condensed matter. However, systems with sign problems are largely inaccessible to classical computations and also beyond the current limitations of digital quantum hardware. In this work, we develop an analog approach to simulating gauge theories with an experimental setup that employs dipolar spins (molecules or Rydberg atoms). We consider molecules fixed in space and interacting through dipole-dipole interactions, avoiding the need for itinerant degrees of freedom. Each molecule represents either a site or gauge degree of freedom, and Gauss law is preserved by a direct and programmatic tuning of positions and internal state energies. This approach can be regarded as a form of analog systems programming and charts a path forward for near-term quantum simulation. As a first step, we numerically validate this scheme in a small-system study of U(1) quantum link models in (1+1) dimensions with link spin S = 1/2 and S = 1 and illustrate how dynamical phenomena such as string inversion and string breaking could be observed in near-term experiments. Our work brings together methods from atomic and molecular physics, condensed matter physics, high-energy physics, and quantum information science for the study of nonperturbative processes in gauge theories.
Correlated many-fermion systems emerge in a broad range of phenomena in warm dense matter, plasmonics, and ultracold atoms. Quantum hydrodynamics (QHD) complements common first-principles methods for many-fermion systems and enables simulations at larger length and longer time scales. While the quantum Bohm potential is central to QHD, we illustrate its failure for strong perturbations. We extend QHD to this regime by utilizing the many-fermion quantum Bohm potential. This opens up the path to more accurate simulations in strongly perturbed warm dense matter, inhomogeneous quantum plasmas, and on nano-structure surfaces at scales unattainable with first-principles algorithms. The many-fermion quantum Bohm potential might also have important astrophysical applications in developing conformal-invariant cosmologies.
The Floquet Hamiltonian has often been used to describe a time-periodic system. Nevertheless, because the Floquet Hamiltonian depends on a micro-motion parameter, the Floquet Hamiltonian with a fixed micro-motion parameter cannot faithfully represent a driven system, which manifests as the anomalous edge states. Here we show that an accurate description of a Floquet system requires a set of Hamiltonian exhausting all values of the micro-motion parameter, and this micro-motion parameter can be viewed as an extra synthetic dimension of the system. Therefore, we show that a $d$-dimensional Floquet system can be described by a $d+1$-dimensional static Hamiltonian, and the advantage of this representation is that the periodic boundary condition is automatically imposed along the extra-dimension, which enables a straightforward definition of topological invariants. The topological invariant in the $d+1$-dimensional system can ensure a $d-1$-dimensional edge state of the $d$-dimensional Floquet system. Here we show two examples where the topological invariant is a three-dimensional Hopf invariant. We highlight that our scheme of classifying Floquet topology on the micro-motion space is different from the previous classification of Floquet topology on the time space.
We show how the spin independent scattering between two identical flying qubits can be used to implement an entangling quantum gate between them. We consider one dimensional models with a delta interaction in which the qubits undergoing the collision are distinctly labeled by their opposite momenta. The logical states of the qubit may either be two distinct spin (or other internal) states of a fermion or a boson or two distinct momenta magnitudes of a spinless boson. Our scheme could be added to linear optics-like quantum information processing to enhance its efficiency, and can also aid the scaling of quantum computers based on static qubits without resorting to photons. Three distinct ingredients -- the quantum indistinguishability of the qubits, their interaction, and their dimensional confinement, come together in a natural way to enable the quantum gate.
We demonstrate two simple theorems about squeezing induced by bilinear spin-spin interactions that conserve spin parity -- including a vast majority of quantum spin models implemented by state-of-the-art quantum simulators. In particular we show that squeezing captures the first form of quantum correlations which are produced: 1) at equilibrium, by adiabatically turning on the spin-spin interactions starting from a factorized state aligned with an external, arbitrary field; 2) away from equilibrium, by evolving unitarily the same state with the interacting Hamiltonian.