No Arabic abstract
Graph clustering groups entities -- the vertices of a graph -- based on their similarity, typically using a complex distance function over a large number of features. Successful integration of clustering approaches in automated decision-support systems hinges on the interpretability of the resulting clusters. This paper addresses the problem of generating interpretable clusters, given features of interest that signify interpretability to an end-user, by optimizing interpretability in addition to common clustering objectives. We propose a $beta$-interpretable clustering algorithm that ensures that at least $beta$ fraction of nodes in each cluster share the same feature value. The tunable parameter $beta$ is user-specified. We also present a more efficient algorithm for scenarios with $beta!=!1$ and analyze the theoretical guarantees of the two algorithms. Finally, we empirically demonstrate the benefits of our approaches in generating interpretable clusters using four real-world datasets. The interpretability of the clusters is complemented by generating simple explanations denoting the feature values of the nodes in the clusters, using frequent pattern mining.
New geometric and computational analyses of power-weighted shortest-path distances (PWSPDs) are presented. By illuminating the way these metrics balance density and geometry in the underlying data, we clarify their key parameters and discuss how they may be chosen in practice. Comparisons are made with related data-driven metrics, which illustrate the broader role of density in kernel-based unsupervised and semi-supervised machine learning. Computationally, we relate PWSPDs on complete weighted graphs to their analogues on weighted nearest neighbor graphs, providing high probability guarantees on their equivalence that are near-optimal. Connections with percolation theory are developed to establish estimates on the bias and variance of PWSPDs in the finite sample setting. The theoretical results are bolstered by illustrative experiments, demonstrating the versatility of PWSPDs for a wide range of data settings. Throughout the paper, our results require only that the underlying data is sampled from a low-dimensional manifold, and depend crucially on the intrinsic dimension of this manifold, rather than its ambient dimension.
Suppose, we are given a set of $n$ elements to be clustered into $k$ (unknown) clusters, and an oracle/expert labeler that can interactively answer pair-wise queries of the form, do two elements $u$ and $v$ belong to the same cluster?. The goal is to recover the optimum clustering by asking the minimum number of queries. In this paper, we initiate a rigorous theoretical study of this basic problem of query complexity of interactive clustering, and provide strong information theoretic lower bounds, as well as nearly matching upper bounds. Most clustering problems come with a similarity matrix, which is used by an automated process to cluster similar points together. Our main contribution in this paper is to show the dramatic power of side information aka similarity matrix on reducing the query complexity of clustering. A similarity matrix represents noisy pair-wise relationships such as one computed by some function on attributes of the elements. A natural noisy model is where similarity values are drawn independently from some arbitrary probability distribution $f_+$ when the underlying pair of elements belong to the same cluster, and from some $f_-$ otherwise. We show that given such a similarity matrix, the query complexity reduces drastically from $Theta(nk)$ (no similarity matrix) to $O(frac{k^2log{n}}{cH^2(f_+|f_-)})$ where $cH^2$ denotes the squared Hellinger divergence. Moreover, this is also information-theoretic optimal within an $O(log{n})$ factor. Our algorithms are all efficient, and parameter free, i.e., they work without any knowledge of $k, f_+$ and $f_-$, and only depend logarithmically with $n$. Along the way, our work also reveals intriguing connection to popular community detection models such as the {em stochastic block model}, significantly generalizes them, and opens up many venues for interesting future research.
As artificial intelligence is increasingly affecting all parts of society and life, there is growing recognition that human interpretability of machine learning models is important. It is often argued that accuracy or other similar generalization performance metrics must be sacrificed in order to gain interpretability. Such arguments, however, fail to acknowledge that the overall decision-making system is composed of two entities: the learned model and a human who fuses together model outputs with his or her own information. As such, the relevant performance criteria should be for the entire system, not just for the machine learning component. In this work, we characterize the performance of such two-node tandem data fusion systems using the theory of distributed detection. In doing so, we work in the population setting and model interpretable learned models as multi-level quantizers. We prove that under our abstraction, the overall system of a human with an interpretable classifier outperforms one with a black box classifier.
We often desire our models to be interpretable as well as accurate. Prior work on optimizing models for interpretability has relied on easy-to-quantify proxies for interpretability, such as sparsity or the number of operations required. In this work, we optimize for interpretability by directly including humans in the optimization loop. We develop an algorithm that minimizes the number of user studies to find models that are both predictive and interpretable and demonstrate our approach on several data sets. Our human subjects results show trends towards different proxy notions of interpretability on different datasets, which suggests that different proxies are preferred on different tasks.