Do you want to publish a course? Click here

Human-in-the-Loop Interpretability Prior

130   0   0.0 ( 0 )
 Added by Isaac Lage
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We often desire our models to be interpretable as well as accurate. Prior work on optimizing models for interpretability has relied on easy-to-quantify proxies for interpretability, such as sparsity or the number of operations required. In this work, we optimize for interpretability by directly including humans in the optimization loop. We develop an algorithm that minimizes the number of user studies to find models that are both predictive and interpretable and demonstrate our approach on several data sets. Our human subjects results show trends towards different proxy notions of interpretability on different datasets, which suggests that different proxies are preferred on different tasks.



rate research

Read More

Zeroth-order (ZO) optimization is widely used to handle challenging tasks, such as query-based black-box adversarial attacks and reinforcement learning. Various attempts have been made to integrate prior information into the gradient estimation procedure based on finite differences, with promising empirical results. However, their convergence properties are not well understood. This paper makes an attempt to fill this gap by analyzing the convergence of prior-guided ZO algorithms under a greedy descent framework with various gradient estimators. We provide a convergence guarantee for the prior-guided random gradient-free (PRGF) algorithms. Moreover, to further accelerate over greedy descent methods, we present a new accelerated random search (ARS) algorithm that incorporates prior information, together with a convergence analysis. Finally, our theoretical results are confirmed by experiments on several numerical benchmarks as well as adversarial attacks.
Post-hoc model-agnostic interpretation methods such as partial dependence plots can be employed to interpret complex machine learning models. While these interpretation methods can be applied regardless of model complexity, they can produce misleading and verbose results if the model is too complex, especially w.r.t. feature interactions. To quantify the complexity of arbitrary machine learning models, we propose model-agnostic complexity measures based on functional decomposition: number of features used, interaction strength and main effect complexity. We show that post-hoc interpretation of models that minimize the three measures is more reliable and compact. Furthermore, we demonstrate the application of these measures in a multi-objective optimization approach which simultaneously minimizes loss and complexity.
We propose a novel method for network inference from partially observed edges using a node-specific degree prior. The degree prior is derived from observed edges in the network to be inferred, and its hyper-parameters are determined by cross validation. Then we formulate network inference as a matrix completion problem regularized by our degree prior. Our theoretical analysis indicates that this prior favors a network following the learned degree distribution, and may lead to improved network recovery error bound than previous work. Experimental results on both simulated and real biological networks demonstrate the superior performance of our method in various settings.
We develop a classification algorithm for estimating posterior distributions from positive-unlabeled data, that is robust to noise in the positive labels and effective for high-dimensional data. In recent years, several algorithms have been proposed to learn from positive-unlabeled data; however, many of these contributions remain theoretical, performing poorly on real high-dimensional data that is typically contaminated with noise. We build on this previous work to develop two practical classification algorithms that explicitly model the noise in the positive labels and utilize univariate transforms built on discriminative classifiers. We prove that these univariate transforms preserve the class prior, enabling estimation in the univariate space and avoiding kernel density estimation for high-dimensional data. The theoretical development and both parametric and nonparametric algorithms proposed here constitutes an important step towards wide-spread use of robust classification algorithms for positive-unlabeled data.
We revisit Rahimi and Recht (2007)s kernel random Fourier features (RFF) method through the lens of the PAC-Bayesian theory. While the primary goal of RFF is to approximate a kernel, we look at the Fourier transform as a prior distribution over trigonometric hypotheses. It naturally suggests learning a posterior on these hypotheses. We derive generalization bounds that are optimized by learning a pseudo-posterior obtained from a closed-form expression. Based on this study, we consider two learning strategies: The first one finds a compact landmarks-based representation of the data where each landmark is given by a distribution-tailored similarity measure, while the second one provides a PAC-Bayesian justification to the kernel alignment method of Sinha and Duchi (2016).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا