Do you want to publish a course? Click here

Why Interpretability in Machine Learning? An Answer Using Distributed Detection and Data Fusion Theory

323   0   0.0 ( 0 )
 Added by Kush Varshney
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

As artificial intelligence is increasingly affecting all parts of society and life, there is growing recognition that human interpretability of machine learning models is important. It is often argued that accuracy or other similar generalization performance metrics must be sacrificed in order to gain interpretability. Such arguments, however, fail to acknowledge that the overall decision-making system is composed of two entities: the learned model and a human who fuses together model outputs with his or her own information. As such, the relevant performance criteria should be for the entire system, not just for the machine learning component. In this work, we characterize the performance of such two-node tandem data fusion systems using the theory of distributed detection. In doing so, we work in the population setting and model interpretable learned models as multi-level quantizers. We prove that under our abstraction, the overall system of a human with an interpretable classifier outperforms one with a black box classifier.



rate research

Read More

Codes are widely used in many engineering applications to offer robustness against noise. In large-scale systems there are several types of noise that can affect the performance of distributed machine learning algorithms -- straggler nodes, system failures, or communication bottlenecks -- but there has been little interaction cutting across codes, machine learning, and distributed systems. In this work, we provide theoretical insights on how coded solutions can achieve significant gains compared to uncoded ones. We focus on two of the most basic building blocks of distributed learning algorithms: matrix multiplication and data shuffling. For matrix multiplication, we use codes to alleviate the effect of stragglers, and show that if the number of homogeneous workers is $n$, and the runtime of each subtask has an exponential tail, coded computation can speed up distributed matrix multiplication by a factor of $log n$. For data shuffling, we use codes to reduce communication bottlenecks, exploiting the excess in storage. We show that when a constant fraction $alpha$ of the data matrix can be cached at each worker, and $n$ is the number of workers, emph{coded shuffling} reduces the communication cost by a factor of $(alpha + frac{1}{n})gamma(n)$ compared to uncoded shuffling, where $gamma(n)$ is the ratio of the cost of unicasting $n$ messages to $n$ users to multicasting a common message (of the same size) to $n$ users. For instance, $gamma(n) simeq n$ if multicasting a message to $n$ users is as cheap as unicasting a message to one user. We also provide experiment results, corroborating our theoretical gains of the coded algorithms.
The design of symbol detectors in digital communication systems has traditionally relied on statistical channel models that describe the relation between the transmitted symbols and the observed signal at the receiver. Here we review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms. In this hybrid approach, well-known channel-model-based algorithms such as the Viterbi method, BCJR detection, and multiple-input multiple-output (MIMO) soft interference cancellation (SIC) are augmented with ML-based algorithms to remove their channel-model-dependence, allowing the receiver to learn to implement these algorithms solely from data. The resulting data-driven receivers are most suitable for systems where the underlying channel models are poorly understood, highly complex, or do not well-capture the underlying physics. Our approach is unique in that it only replaces the channel-model-based computations with dedicated neural networks that can be trained from a small amount of data, while keeping the general algorithm intact. Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship and in the presence of channel state information uncertainty.
Due to its high computational speed and accuracy compared to ab-initio quantum chemistry and forcefield modeling, the prediction of molecular properties using machine learning has received great attention in the fields of materials design and drug discovery. A main ingredient required for machine learning is a training dataset consisting of molecular featurestextemdash for example fingerprint bits, chemical descriptors, etc. that adequately characterize the corresponding molecules. However, choosing features for any application is highly non-trivial. No universal method for feature selection exists. In this work, we propose a data fusion framework that uses Independent Vector Analysis to exploit underlying complementary information contained in different molecular featurization methods, bringing us a step closer to automated feature generation. Our approach takes an arbitrary number of individual feature vectors and automatically generates a single, compact (low dimensional) set of molecular features that can be used to enhance the prediction performance of regression models. At the same time our methodology retains the possibility of interpreting the generated features to discover relationships between molecular structures and properties. We demonstrate this on the QM7b dataset for the prediction of several properties such as atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. In addition, we show how our method helps improve the prediction of experimental binding affinities for a set of human BACE-1 inhibitors. To encourage more widespread use of IVA we have developed the PyIVA Python package, an open source code which is available for download on Github.
This paper introduces a novel measure-theoretic theory for machine learning that does not require statistical assumptions. Based on this theory, a new regularization method in deep learning is derived and shown to outperform previous methods in CIFAR-10, CIFAR-100, and SVHN. Moreover, the proposed theory provides a theoretical basis for a family of practically successful regularization methods in deep learning. We discuss several consequences of our results on one-shot learning, representation learning, deep learning, and curriculum learning. Unlike statistical learning theory, the proposed learning theory analyzes each problem instance individually via measure theory, rather than a set of problem instances via statistics. As a result, it provides different types of results and insights when compared to statistical learning theory.
An associative memory is a framework of content-addressable memory that stores a collection of message vectors (or a dataset) over a neural network while enabling a neurally feasible mechanism to recover any message in the dataset from its noisy version. Designing an associative memory requires addressing two main tasks: 1) learning phase: given a dataset, learn a concise representation of the dataset in the form of a graphical model (or a neural network), 2) recall phase: given a noisy version of a message vector from the dataset, output the correct message vector via a neurally feasible algorithm over the network learnt during the learning phase. This paper studies the problem of designing a class of neural associative memories which learns a network representation for a large dataset that ensures correction against a large number of adversarial errors during the recall phase. Specifically, the associative memories designed in this paper can store dataset containing $exp(n)$ $n$-length message vectors over a network with $O(n)$ nodes and can tolerate $Omega(frac{n}{{rm polylog} n})$ adversarial errors. This paper carries out this memory design by mapping the learning phase and recall phase to the tasks of dictionary learning with a square dictionary and iterative error correction in an expander code, respectively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا