No Arabic abstract
We study auctions for carbon licenses, a policy tool used to control the social cost of pollution. Each identical license grants the right to produce a unit of pollution. Each buyer (i.e., firm that pollutes during the manufacturing process) enjoys a decreasing marginal value for licenses, but society suffers an increasing marginal cost for each license distributed. The seller (i.e., the government) can choose a number of licenses to put up for auction, and wishes to maximize the societal welfare: the total economic value of the buyers minus the social cost. Motivated by emission license markets deployed in practice, we focus on uniform price auctions with a price floor and/or price ceiling. The seller has distributional information about the market, and their goal is to tune the auction parameters to maximize expected welfare. The target benchmark is the maximum expected welfare achievable by any such auction under truth-telling behavior. Unfortunately, the uniform price auction is not truthful, and strategic behavior can significantly reduce (even below zero) the welfare of a given auction configuration. We describe a subclass of safe-price auctions for which the welfare at any Bayes-Nash equilibrium will approximate the welfare under truth-telling behavior. We then show that the better of a safe-price auction, or a truthful auction that allocates licenses to only a single buyer, will approximate the target benchmark. In particular, we show how to choose a number of licenses and a price floor so that the worst-case welfare, at any equilibrium, is a constant approximation to the best achievable welfare under truth-telling after excluding the welfare contribution of a single buyer.
A seminal result of Bulow and Klemperer [1989] demonstrates the power of competition for extracting revenue: when selling a single item to $n$ bidders whose values are drawn i.i.d. from a regular distribution, the simple welfare-maximizing VCG mechanism (in this case, a second price-auction) with one additional bidder extracts at least as much revenue in expectation as the optimal mechanism. The beauty of this theorem stems from the fact that VCG is a {em prior-independent} mechanism, where the seller possesses no information about the distribution, and yet, by recruiting one additional bidder it performs better than any prior-dependent mechanism tailored exactly to the distribution at hand (without the additional bidder). In this work, we establish the first {em full Bulow-Klemperer} results in {em multi-dimensional} environments, proving that by recruiting additional bidders, the revenue of the VCG mechanism surpasses that of the optimal (possibly randomized, Bayesian incentive compatible) mechanism. For a given environment with i.i.d. bidders, we term the number of additional bidders needed to achieve this guarantee the environments {em competition complexity}. Using the recent duality-based framework of Cai et al. [2016] for reasoning about optimal revenue, we show that the competition complexity of $n$ bidders with additive valuations over $m$ independent, regular items is at most $n+2m-2$ and at least $log(m)$. We extend our results to bidders with additive valuations subject to downward-closed constraints, showing that these significantly more general valuations increase the competition complexity by at most an additive $m-1$ factor. We further improve this bound for the special case of matroid constraints, and provide additional extensions as well.
We study two standard multi-unit auction formats for allocating multiple units of a single good to multi-demand bidders. The first one is the Discriminatory Auction, which charges every winner his winning bids. The second is the Uniform Price Auction, which determines a uniform price to be paid per unit. Variants of both formats find applications ranging from the allocation of state bonds to investors, to online sales over the internet, facilitated by popular online brokers. For these formats, we consider two bidding interfaces: (i) standard bidding, which is most prevalent in the scientific literature, and (ii) uniform bidding, which is more popular in practice. In this work, we evaluate the economic inefficiency of both multi-unit auction formats for both bidding interfaces, by means of upper and lower bounds on the Price of Anarchy for pure Nash equilibria and mixed Bayes-Nash equilibria. Our developments improve significantly upon bounds that have been obtained recently in [Markakis, Telelis, ToCS 2014] and [Syrgkanis, Tardos, STOC 2013] for submodular valuation functions. Moreover, we consider for the first time bidders with subadditive valuation functions for these auction formats. Our results signify that these auctions are nearly efficient, which provides further justification for their use in practice.
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1) It takes into account the risk characteristics of the advertisers. 2) For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, the hybrid auction can result in significantly higher revenue. 3) An advertiser who believes that its click-probability is much higher than the auctioneers estimate can use per-impression bids to correct the auctioneers prior without incurring any extra cost. 4) The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction.
We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that guarantees a non-trivial approximation ratio of $O(log^2 m)$ [STOC06], where $m$ is the number of items. This was subsequently improved to $O(log mlog log m)$ [Dobzinski, APPROX07] and then to $O(log m)$ [Krysta and Vocking, ICALP12]. In this paper we develop the first mechanism that breaks the logarithmic barrier. Specifically, the mechanism provides an approximation ratio of $O(sqrt {log m})$. Similarly to previous constructions, our mechanism uses polynomially many value and demand queries, and in fact provides the same approximation ratio for the larger class of XOS (a.k.a. fractionally subadditive) valuations. We also develop a computationally efficient implementation of the mechanism for combinatorial auctions with budget additive bidders. Although in general computing a demand query is NP-hard for budget additive valuations, we observe that the specific form of demand queries that our mechanism uses can be efficiently computed when bidders are budget additive.
In this note we study the greedy algorithm for combinatorial auctions with submodular bidders. It is well known that this algorithm provides an approximation ratio of $2$ for every order of the items. We show that if the valuations are vertex cover functions and the order is random then the expected approximation ratio imrpoves to $frac 7 4$.