Do you want to publish a course? Click here

Breaking the Logarithmic Barrier for Truthful Combinatorial Auctions with Submodular Bidders

77   0   0.0 ( 0 )
 Added by Shahar Dobzinski
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that guarantees a non-trivial approximation ratio of $O(log^2 m)$ [STOC06], where $m$ is the number of items. This was subsequently improved to $O(log mlog log m)$ [Dobzinski, APPROX07] and then to $O(log m)$ [Krysta and Vocking, ICALP12]. In this paper we develop the first mechanism that breaks the logarithmic barrier. Specifically, the mechanism provides an approximation ratio of $O(sqrt {log m})$. Similarly to previous constructions, our mechanism uses polynomially many value and demand queries, and in fact provides the same approximation ratio for the larger class of XOS (a.k.a. fractionally subadditive) valuations. We also develop a computationally efficient implementation of the mechanism for combinatorial auctions with budget additive bidders. Although in general computing a demand query is NP-hard for budget additive valuations, we observe that the specific form of demand queries that our mechanism uses can be efficiently computed when bidders are budget additive.



rate research

Read More

We provide the first separation in the approximation guarantee achievable by truthful and non-truthful combinatorial auctions with polynomial communication. Specifically, we prove that any truthful mechanism guaranteeing a $(frac{3}{4}-frac{1}{240}+varepsilon)$-approximation for two buyers with XOS valuations over $m$ items requires $exp(Omega(varepsilon^2 cdot m))$ communication, whereas a non-truthful algorithm by Dobzinski and Schapira [SODA 2006] and Feige [2009] is already known to achieve a $frac{3}{4}$-approximation in $poly(m)$ communication. We obtain our separation by proving that any {simultaneous} protocol ({not} necessarily truthful) which guarantees a $(frac{3}{4}-frac{1}{240}+varepsilon)$-approximation requires communication $exp(Omega(varepsilon^2 cdot m))$. The taxation complexity framework of Dobzinski [FOCS 2016] extends this lower bound to all truthful mechanisms (including interactive truthful mechanisms).
A seminal result of Bulow and Klemperer [1989] demonstrates the power of competition for extracting revenue: when selling a single item to $n$ bidders whose values are drawn i.i.d. from a regular distribution, the simple welfare-maximizing VCG mechanism (in this case, a second price-auction) with one additional bidder extracts at least as much revenue in expectation as the optimal mechanism. The beauty of this theorem stems from the fact that VCG is a {em prior-independent} mechanism, where the seller possesses no information about the distribution, and yet, by recruiting one additional bidder it performs better than any prior-dependent mechanism tailored exactly to the distribution at hand (without the additional bidder). In this work, we establish the first {em full Bulow-Klemperer} results in {em multi-dimensional} environments, proving that by recruiting additional bidders, the revenue of the VCG mechanism surpasses that of the optimal (possibly randomized, Bayesian incentive compatible) mechanism. For a given environment with i.i.d. bidders, we term the number of additional bidders needed to achieve this guarantee the environments {em competition complexity}. Using the recent duality-based framework of Cai et al. [2016] for reasoning about optimal revenue, we show that the competition complexity of $n$ bidders with additive valuations over $m$ independent, regular items is at most $n+2m-2$ and at least $log(m)$. We extend our results to bidders with additive valuations subject to downward-closed constraints, showing that these significantly more general valuations increase the competition complexity by at most an additive $m-1$ factor. We further improve this bound for the special case of matroid constraints, and provide additional extensions as well.
125 - Shahar Dobzinski , Ami Mor 2015
In this note we study the greedy algorithm for combinatorial auctions with submodular bidders. It is well known that this algorithm provides an approximation ratio of $2$ for every order of the items. We show that if the valuations are vertex cover functions and the order is random then the expected approximation ratio imrpoves to $frac 7 4$.
We study the problem of selling a good to a group of bidders with interdependent values in a prior-free setting. Each bidder has a signal that can take one of $k$ different values, and her value for the good is a weakly increasing function of all the bidders signals. The bidders are partitioned into $ell$ expertise-groups, based on how their signal can impact the values for the good, and we prove upper and lower bounds regarding the approximability of social welfare and revenue for a variety of settings, parameterized by $k$ and $ell$. Our lower bounds apply to all ex-post incentive compatible mechanisms and our upper bounds are all within a small constant of the lower bounds. Our main results take the appealing form of ascending clock auctions and provide strong incentives by admitting the desired outcomes as obvious ex-post equilibria.
We study combinatorial auctions with bidders that exhibit endowment effect. In most of the previous work on cognitive biases in algorithmic game theory (e.g., [Kleinberg and Oren, EC14] and its follow-ups) the focus was on analyzing the implications and mitigating their negative consequences. In contrast, in this paper we show how in some cases cognitive biases can be harnessed to obtain better outcomes. Specifically, we study Walrasian equilibria in combinatorial markets. It is well known that Walrasian equilibria exist only in limited settings, e.g., when all valuations are gross substitutes, but fails to exist in more general settings, e.g., when the valuations are submodular. We consider combinatorial settings in which bidders exhibit the endowment effect, that is, their value for items increases with ownership. Our main result shows that when the valuations are submodular, even a mild degree of endowment effect is sufficient to guarantee the existence of Walrasian equilibria. In fact, we show that in contrast to Walrasian equilibria with standard utility maximizing bidders -- in which the equilibrium allocation must be efficient -- when bidders exhibit endowment effect any local optimum can be an equilibrium allocation. Our techniques reveal interesting connections between the LP relaxation of combinatorial auctions and local maxima. We also provide lower bounds on the intensity of the endowment effect that the bidders must have in order to guarantee the existence of a Walrasian equilibrium in various settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا