Do you want to publish a course? Click here

Generation of doubly excited Rydberg states based on Rydberg antiblockade in a cold atomic ensemble

89   0   0.0 ( 0 )
 Added by Khabat Heshami
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interaction between Rydberg atoms can significantly modify Rydberg excitation dynamics. Under a resonant driving field the Rydberg-Rydberg interaction in high-lying states can induce shifts in the atomic resonance such that a secondary Rydberg excitation becomes unlikely leading to the Rydberg blockade effect. In a related effect, off-resonant coupling of light to Rydberg states of atoms contributes to the Rydberg anti-blockade effect where the Rydberg interaction creates a resonant condition that promotes a secondary excitation in a Rydberg atomic gas. Here, we study the light-matter interaction and dynamics of off-resonant two-photon excitations and include two- and three-atom Rydberg interactions and their effect on excited state dynamics in an ensemble of cold atoms. In an experimentally-motivated regime, we find the optimal physical parameters such as Rabi frequencies, two-photon detuning, and pump duration to achieve significant enhancement in the probability of generating doubly-excited collective atomic states. This results in large auto-correlation values due to the Rydberg anti-blockade effect and makes this system a potential candidate for a high-purity two-photon Fock state source.



rate research

Read More

We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with inter-particle distances of around 5 {mu}m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.
We propose to implement the Jaynes-Cummings model by coupling a few-micrometer large atomic ensemble to a quantized cavity mode and classical laser fields. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a non-resonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states, and that the atomic nonlinearity gives rise to highly non-trivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.
We present a study of the Rydberg spectrum in ts{166}Er for series connected to the $4f^{12} (^3H_6) 6s$, $J_c=13/2 $ and $J_c=11/2 $ ionic core states using an all-optical detection based on electromagnetically induced transparency in an effusive atomic beam. Identifying approximately 550 individual states, we find good agreement with a multi-channel quantum defect theory (MQDT) which allows assignment of most states to $ns$ or $nd$ Rydberg series. We provide an improved accuracy for the lowest two ionization thresholds to $E_{textrm{IP}, J_c = 13/2 } = 49260.750(1),$cm$^{-1}$ and $E_{textrm{IP}, J_c = 11/2 } = 49701.184(1),$cm$^{-1}$ as well as the corresponding quantum defects for all observed series. We identify Rydberg states in five different isotopes, and states between the two lowest ionization thresholds. Our results open the way for future applications of Rydberg states for quantum simulation using erbium and exploiting its special open-shell structure.
In this letter we investigate the possibility to attain strongly confined atomic localization using interacting Rydberg atoms in a Coherent Population Trapping (CPT) ladder configuration, where a standing-wave (SW) is used as a coupling field in the second leg of the ladder. Depending on the degree of compensation of the Rydberg level energy shift induced by the van der Waals (vdW) interaction, by the coupling field detuning, we distinguish between two antiblockade regimes, i.e. a partial antiblockade (PA) and a full antiblockade (FA). While a periodic pattern of tightly localized regions can be achieved for both regimes, the PA allows much faster converge of spatial confinement yielding a high resolution Rydberg state-selective superlocalization regime for higher-lying Rydberg levels. In comparison, for lower-lying Rydberg levels the PA leads to an anomalous change of spectra linewidth, confirming the importance of using a stable uppermost state to achieve a superlocalization regime.
High-fidelity entangled Bell states are of great interest in quantum physics. Entanglement of ultracold neutral atoms in two spatially separated optical dipole traps is promising for implementation of quantum computing and quantum simulation and for investigation of Bell states of material objects. We propose a new method to entangle two atoms via long-range Rydberg-Rydberg interaction. Alternatively to previous approaches, based on Rydberg blockade, we consider radiofrequency-assisted Stark-tuned F{o}rster resonances in Rb Rydberg atoms. To reduce the sensitivity of the fidelity of Bell states to the fluctuations of interatomic distance, we propose to use the double adiabatic passage across the radiofrequency-assisted Stark-tuned F{o}rster resonances, which results in a deterministic phase shift of the two-atom state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا