Do you want to publish a course? Click here

Strongly confined atomic localization by Rydberg coherent population trapping

73   0   0.0 ( 0 )
 Added by Jing Qian
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter we investigate the possibility to attain strongly confined atomic localization using interacting Rydberg atoms in a Coherent Population Trapping (CPT) ladder configuration, where a standing-wave (SW) is used as a coupling field in the second leg of the ladder. Depending on the degree of compensation of the Rydberg level energy shift induced by the van der Waals (vdW) interaction, by the coupling field detuning, we distinguish between two antiblockade regimes, i.e. a partial antiblockade (PA) and a full antiblockade (FA). While a periodic pattern of tightly localized regions can be achieved for both regimes, the PA allows much faster converge of spatial confinement yielding a high resolution Rydberg state-selective superlocalization regime for higher-lying Rydberg levels. In comparison, for lower-lying Rydberg levels the PA leads to an anomalous change of spectra linewidth, confirming the importance of using a stable uppermost state to achieve a superlocalization regime.



rate research

Read More

We demonstrate three-dimensional trapping of individual Rydberg atoms in holographic optical bottle beam traps. Starting with cold, ground-state $^{87}$Rb atoms held in standard optical tweezers, we excite them to $nS_{1/2}$, $nP_{1/2}$, or $nD_{3/2}$ Rydberg states and transfer them to a hollow trap at 850 nm. For principal quantum numbers $60 leqslant n leqslant 90$, the measured trapping time coincides with the Rydberg state lifetime in a 300~K environment. We show that these traps are compatible with quantum information and simulation tasks by performing single qubit microwave Rabi flopping, as well as by measuring the interaction-induced, coherent spin-exchange dynamics between two trapped Rydberg atoms separated by 40 $mu$m. These results will find applications in the realization of high-fidelity quantum simulations and quantum logic operations with Rydberg atoms.
Interaction between Rydberg atoms can significantly modify Rydberg excitation dynamics. Under a resonant driving field the Rydberg-Rydberg interaction in high-lying states can induce shifts in the atomic resonance such that a secondary Rydberg excitation becomes unlikely leading to the Rydberg blockade effect. In a related effect, off-resonant coupling of light to Rydberg states of atoms contributes to the Rydberg anti-blockade effect where the Rydberg interaction creates a resonant condition that promotes a secondary excitation in a Rydberg atomic gas. Here, we study the light-matter interaction and dynamics of off-resonant two-photon excitations and include two- and three-atom Rydberg interactions and their effect on excited state dynamics in an ensemble of cold atoms. In an experimentally-motivated regime, we find the optimal physical parameters such as Rabi frequencies, two-photon detuning, and pump duration to achieve significant enhancement in the probability of generating doubly-excited collective atomic states. This results in large auto-correlation values due to the Rydberg anti-blockade effect and makes this system a potential candidate for a high-purity two-photon Fock state source.
The observation of strongly interacting many-body phenomena in atomic gases typically requires ultracold samples. Here we show that the strong interaction potentials between Rydberg atoms enable the observation of many-body effects in an atomic vapor, even at room temperature. We excite Rydberg atoms in cesium vapor and observe in real-time an out-of-equilibrium excitation dynamics that is consistent with an aggregation mechanism. The experimental observations show qualitative and quantitative agreement with a microscopic theoretical model. Numerical simulations reveal that the strongly correlated growth of the emerging aggregates is reminiscent of soft-matter type systems.
Ramsey spectroscopy via coherent population trapping (CPT) is essential in precision measurements. The conventional CPT-Ramsey fringes contain numbers of almost identical oscillations and so that it is difficult to identify the central fringe. Here, we experimentally demonstrate a temporal spinwave Fabry-P{e}rot interferometry via double-$Lambda$ CPT of laser-cooled $^{87}$Rb atoms. Due to the constructive interference of temporal spinwaves, the transmission spectrum appears as a comb of equidistant peaks in frequency domain and thus the central Ramsey fringe can be easily identified. From the optical Bloch equations for our five-level double-$Lambda$ system, the transmission spectrum is analytically explained by the Fabry-P{e}rot interferometry of temporal spinwaves. Due to small amplitude difference between the two Land{e} factors, each peak splits into two when the external magnetic field is not too weak. This peak splitting can be employed to measure an unknown magnetic field without involving magneto-sensitive transitions.
The Dick effect can be a limitation of the achievable frequency stability of a passive atomic frequency standard when the ancillary frequency source is only periodically sampled. Here we analyze the Dick effect for a pulsed vapor cell clock using coherent population trapping (CPT). Due to its specific interrogation process without atomic preparation nor detection outside of the Ramsey pulses, it exhibits an original shape of the sensitivity function to phase noise of the oscillator. Numerical calculations using a three-level atom model are successfully compared with measurements; an approximate formula of the sensitivity function is given as an easy-to-use tool. A comparison of our CPT clock sensitivity to phase noise with a clock of the same duty cycle using a two-level system reveals a higher sensitivity in the CPT case. The influence of a free-evolution time variation and of a detection duration lengthening on this sensitivity is studied. Finally this study permitted to choose an adapted quartz oscillator and allowed an improvement of the clock fractional frequency stability at the level of 3.2x10-13 at 1s
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا