No Arabic abstract
Our familiar Newtons laws allow determination of both position and velocity of any object precisely. Early nineteenth century saw the birth of quantum mechanics where all measurements must obey Heisenbergs uncertainty principle. Basically, we cannot simultaneously measure with precision, both position and momentum of particles in the microscopic atomic world. A natural extension will be to assume that space becomes fuzzy as we approach the study of early universe. That is, all the components of position cannot be simultaneously measured with precision. Such a space is called non-commutative space. In this article, we study quantum mechanics of hydrogen atom on such a fuzzy space. Particularly, we highlight expected corrections to the hydrogen atom energy spectrum due to non-commutative space.
A simulation of the hydrodynamics on the two dimensional non-commutative space is performed, in which the space coordinates $(x, y)$ are non-commutative, satisfying the commutation relation $[x, y]=i theta$. The Navier-Stokes equation has an extra force term which reflects the non-commutativity of the space, being proportional to $theta^2$. This parameter $theta$ is related to the minimum size of fluid particles which is implied by the uncertainty principle, $Delta x Delta y ge theta/2$. To see the effect of this parameter on the flow, following situation is considered. An obstacle placed in the middle of the stream, separates the flow into small slit and large slit, but the flow is joined afterwards in the down stream. For the Reynolds number 700, the behavior of the flows with and without $theta$ is observed to differ, and the difference is seen to be correlated to the difference of the activity of vortices in the down stream. The oscillation of the flow rate at the small slit diminishes after the certain time in the usual flow when the two attached eddies appear. In the non-commutative flow this two attached eddies appear from the beginning and the behavior of the flows does not fluctuate largely. The irregularity in the flow existing in the beginning disappears after the certain time.
The non-relativistic hydrogen atom enjoys an accidental $SO(4)$ symmetry, that enlarges the rotational $SO(3)$ symmetry, by extending the angular momentum algebra with the Runge-Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson-Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius $R$ with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter $gamma$, in general the accidental $SO(4)$ symmetry is lifted. However, for $R = (l+1)(l+2) a$ (where $a$ is the Bohr radius and $l$ is the orbital angular momentum) some degeneracy remains when $gamma = infty$ or $gamma = frac{2}{R}$. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of $R$ and $gamma$.
Hydrogen atom is supposed to be described by a generalization of Schrodinger equation, in which the Hamiltonian depends on an iterated Laplacian and a Coulomb-like potential $r^{-beta}$. Starting from previously obtained solutions for this equation using the $1/N$ expansion method, it is shown that new light can be shed on the problem of understanding the dimensionality of the world as proposed by Paul Ehrenfest. A surprisingly new result is obtained. Indeed, for the first time, we can understand that not only the sign of energy but also the value of the ground state energy of hydrogen atom is related to the threefold nature of space.
The interaction of two colliding Alfven wave packets is here described by means of magnetohydrodynamics (MHD) and hybrid kinetic numerical simulations. The MHD evolution revisits the theoretical insights described by Moffatt, Parker, Kraichnan, Chandrasekhar and Elsasser in which the oppositely propagating large amplitude wave packets interact for a finite time, initiating turbulence. However, the extension to include compressive and kinetic effects, while maintaining the gross characteristics of the simpler classic formulation, also reveals intriguing features which go beyond the pure MHD treatment.
We investigate the properties of two- and three-dimensional non-commutative fermion gases with fixed total z-component of angular momentum, J_z, and at high density for the simplest form of non-commutativity involving constant spatial commutators. Analytic expressions for the entropy and pressure are found. The entropy exhibits non-extensive behaviour while the pressure reveals the presence of incompressibility in two, but not in three dimensions. Remarkably, for two-dimensional systems close to the incompressible density, the entropy is proportional to the square root of the system size, i.e., for such systems the number of microscopic degrees of freedom is determined by the circumference, rather than the area (size) of the system. The absence of incompressibility in three dimensions, and subsequently also the absence of a scaling law for the entropy analogous to the one found in two dimensions, is attributed to the form of the non-commutativity used here, the breaking of the rotational symmetry it implies and the subsequent constraint on J_z, rather than the angular momentum J. Restoring the rotational symmetry while constraining the total angular momentum J seems to be crucial for incompressibility in three dimensions. We briefly discuss ways in which this may be done and point out possible obstacles.