Do you want to publish a course? Click here

Nonperturbative approach to quench dynamics. II. Universal electric current of the nonequilibrium Kondo model

152   0   0.0 ( 0 )
 Added by Adrian Culver
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the previous paper, we found a series expression for the average electric current following a quench in the nonequilibrium Kondo model driven by a bias voltage. Here, we evaluate the steady state current in the regimes of strong and weak coupling. We obtain the standard leading order results in the usual weak antiferromagnetic regime, and we also find a new universal regime of strong ferromagnetic coupling with Kondo temperature $T_K = D e^{frac{3pi^2}{8} rho J}$. In this regime, the differential conductance $dI/dV$ reaches the unitarity limit $2e^2/h$ asymptotically at large voltage or temperature.



rate research

Read More

We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage $phi$ and a magnetic field $B$. We investigate the interplay between the shift ($omega_B$) of the Kondo peak in the spin-resolved density of states (DOS) and the one ($phi_B$) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of $B$ down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as $phi_B$ only for $|g| mu_B B gg k_B T_K$. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.
We present here the details of a method [A. B. Culver and N. Andrei, Phys. Rev. B 103, L201103 (2021)] for calculating the time-dependent many-body wavefunction that follows a local quench. We apply the method to the voltage-driven nonequilibrium Kondo model to find the exact time-evolving wavefunction following a quench where the dot is suddenly attached to the leads at $t=0$. The method, which does not use Bethe ansatz, also works in other quantum impurity models and may be of wider applicability. We show that the long-time limit (with the system size taken to infinity first) of the time-evolving wavefunction of the Kondo model is a current-carrying nonequilibrium steady state that satisfies the Lippmann-Schwinger equation. We show that the electric current in the time-evolving wavefunction is given by a series expression that can be expanded either in weak coupling or in strong coupling, converging to all orders in the steady-state limit in either case. The series agrees to leading order with known results in the well-studied regime of weak antiferromagnetic coupling and also reveals a universal regime of strong ferromagnetic coupling with Kondo temperature $T_K^{(F)} = D e^{-frac{3pi^2}{8} rho |J|}$ ($J<0$, $rho|J|toinfty$). In this regime, the differential conductance $dI/dV$ reaches the unitarity limit $2e^2/h$ asymptotically at large voltage or temperature.
The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of isolated Hubbard dimers, is used to discuss different aspects of the numerical implementation of the approach in the general framework of nonequilibrium self-energy functional theory. Opposed to a direct solution of the Euler equation, its time derivative is found to serve as numerically tractable and stable conditional equation to fix the time-dependent variational parameters.
The quantum evolution after a metallic lead is suddenly connected to an electron system contains information about the excitation spectrum of the combined system. We exploit this type of quantum quench to probe the presence of Majorana fermions at the ends of a topological superconducting wire. We obtain an algebraically decaying overlap (Loschmidt echo) ${cal L}(t)=| < psi(0) | psi(t) > |^2sim t^{-alpha}$ for large times after the quench, with a universal critical exponent $alpha$=1/4 that is found to be remarkably robust against details of the setup, such as interactions in the normal lead, the existence of additional lead channels or the presence of bound levels between the lead and the superconductor. As in recent quantum dot experiments, this exponent could be measured by optical absorption, offering a new signature of Majorana zero modes that is distinct from interferometry and tunneling spectroscopy.
73 - Tie-Feng Fang , Ai-Min Guo , 2018
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction $U$ is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly-correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing negative-$U$ charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. textbf{8}, 395 (2017)].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا