Do you want to publish a course? Click here

Nonequilibrium variational-cluster approach to real-time dynamics in the Fermi-Hubbard model

89   0   0.0 ( 0 )
 Added by Felix Hofmann
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of isolated Hubbard dimers, is used to discuss different aspects of the numerical implementation of the approach in the general framework of nonequilibrium self-energy functional theory. Opposed to a direct solution of the Euler equation, its time derivative is found to serve as numerically tractable and stable conditional equation to fix the time-dependent variational parameters.



rate research

Read More

We develop an efficient variational approach to studying dynamics of a localized quantum spin coupled to a bath of mobile spinful bosons. We use parity symmetry to decouple the impurity spin from the environment via a canonical transformation and reduce the problem to a model of the interacting bosonic bath. We describe coherent time evolution of the latter using bosonic Gaussian states as a variational ansatz. We provide full analytical expressions for equations describing variational time evolution that can be applied to study in- and out-of-equilibrium phenomena in a wide class of quantum impurity problems. In the accompanying paper [Y. Ashida {it et al.}, Phys. Rev. Lett. 123, 183001 (2019)], we present a concrete application of this general formalism to the analysis of the Rydberg Central Spin Model, in which the spin-1/2 Rydberg impurity undergoes spin-changing collisions in a dense cloud of two-component ultracold bosons. To illustrate new features arising from orbital motion of the bath atoms, we compare our results to the Monte Carlo study of the model with spatially localized bosons in the bath, in which random positions of the atoms give rise to random couplings of the standard central spin model.
Using the variational cluster approach (VCA), we study the transition from the antiferromagnetic to the superconducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a new method to evaluate the VCA grand potential which employs a modified Lanczos algorithm and avoids integrations over the real or imaginary frequency axis. Thereby, very accurate results are possible for cluster sizes not accessible to full diagonalization. This is important for an improved treatment of short-range correlations, including correlations between Cooper pairs in particular. We investigate the cluster-size dependence of the phase-separation tendency that has been proposed recently on the basis of calculations for smaller clusters. It is shown that the energy barrier driving the phase separation decreases with increasing cluster size. This supports the conjecture that the ground state exhibits microscopic inhomogeneities rather than macroscopic phase separation. The evolution of the single-particle spectum as a function of doping is studied in addtion and the relevance of our results for experimental findings is pointed out.
We study the phase diagram of the two-dimensional repulsive Hubbard model with spin-dependent anisotropic hopping at half-filling. The system develops Ising antiferromagnetic long-range order already at infinitesimal repulsive interaction strength in the ground state. Outside the perturbative regime, unbiased predictions for the critical temperatures of the Ising antiferromagnet are made for representative interaction values by a variety of state-of-the-art quantum Monte Carlo methods, including the diagrammatic Monte Carlo, continuous-time determinantal Monte Carlo and path-integral Monte Carlo methods. Our findings are relevant to ultracold atom experiments in the p-orbital or with spin-dependent optical lattices.
The nonequilibrium dynamics of strongly-correlated fermions in lattice systems have attracted considerable interest in the condensed matter and ultracold atomic-gas communities. While experiments have made remarkable progress in recent years, there remains a need for the further development of theoretical tools that can account for both the nonequilibrium conditions and strong correlations. For instance, time-dependent theoretical quantum approaches based on the density matrix renormalization group (DMRG) methods have been primarily applied to one-dimensional setups. Recently, two-dimensional quantum simulations of the expansion of fermions based on nonequilibrium Green functions (NEGF) have been presented [Schluenzen et al., Phys. Rev. B 93, 035107 (2016)] that showed excellent agreement with the experiments. Here we present an extensive comparison of the NEGF approach to numerically accurate DMRG results. The results indicate that NEGF are a reliable theoretical tool for weak to intermediate coupling strengths in arbitrary dimensions and make long simulations possible. This is complementary to DMRG simulations which are particularly efficient at strong coupling.
The real-time dynamics of the Fermi-Hubbard model, driven out of equilibrium by quenching or ramping the interaction parameter, is studied within the framework of the nonequilibrium self-energy functional theory. A dynamical impurity approximation with a single auxiliary bath site is considered as a reference system and the time-dependent hybridization is optimized as prescribed by the variational principle. The dynamical two-site approximation turns out to be useful to study the real-time dynamics on short and intermediate time scales. Depending on the strength of the interaction in the final state, two qualitatively different response regimes are observed. For both weak and strong couplings, qualitative agreement with previous results of nonequilibrium dynamical mean-field theory is found. The two regimes are sharply separated by a critical point at which the low-energy bath degree of freedom decouples in the course of time. We trace the dependence of the critical interaction of the dynamical Mott transition on the duration of the interaction ramp from sudden quenches to adiabatic dynamics, and therewith link the dynamical to the equilibrium Mott transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا