Do you want to publish a course? Click here

Nonequilibrium Kondo effect in a magnetic field: Auxiliary master equation approach

162   0   0.0 ( 0 )
 Added by Enrico Arrigoni
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage $phi$ and a magnetic field $B$. We investigate the interplay between the shift ($omega_B$) of the Kondo peak in the spin-resolved density of states (DOS) and the one ($phi_B$) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of $B$ down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as $phi_B$ only for $|g| mu_B B gg k_B T_K$. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.



rate research

Read More

356 - K. Kikoin , Y. Oreg 2006
We study the possibility to observe the two channel Kondo physics in multiple quantum dot heterostructures in the presence of magnetic field. We show that a fine tuning of the coupling parameters of the system and an external magnetic field may stabilize the two channel Kondo critical point. We make predictions for behavior of the scaling of the differential conductance in the vicinity of the quantum critical point, as a function of magnetic field, temperature and source-drain potential.
We investigate the many-body effects of a magnetic adatom in ferromagnetic graphene by using the numerical renormalization group method. The nontrivial band dispersion of ferromagnetic graphene gives rise to interesting Kondo physics different from that in conventional ferromagnetic materials. For a half-filled impurity in undoped graphene, the presence of ferromagnetism can bring forth Kondo correlations, yielding two kink structures in the local spectral function near the Fermi energy. When the spin splitting of local occupations is compensated by an external magnetic field, the two Kondo kinks merge into a full Kondo resonance characterizing the fully screened ground state. Strikingly, we find the resulting Kondo temperature monotonically increases with the spin polarization of Dirac electrons, which violates the common sense that ferromagnetic bands are usually detrimental to Kondo correlations. Doped ferromagnetic graphene can behave as half metals, where its density of states at the Fermi energy linearly vanishes for one spin direction but keeps finite for the opposite direction. In this regime, we demonstrate an abnormal Kondo resonance that occurs in the first spin direction, while completely absent in the other one.
We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on the extension of these phases beyond equilibrium, i.e. under the influence of a bias voltage. Within the auxiliary master equation approach combined with a scheme based on matrix product states (MPS) we are able to directly address the current-carrying steady state. Starting with the equilibrium situation, we first corroborate our results by comparing with a direct numerical evaluation of ground state spectral properties of the system by MPS. Here, a scheme to locate the phase boundary by extrapolating the power-law exponent of the self energy produces a very good agreement with previous results obtained by the numerical renormalization group. Our nonequilibrium study as a function of the applied bias voltage is then carried out for two points on either side of the phase boundary. In the Kondo regime the resonance in the spectral function is splitted as a function of the increasing bias voltage. The local moment regime, instead, displays a dip in the spectrum near the position of the chemical potentials. Similar features are observed in the corresponding self energies. The Kondo split peaks approximately obey a power-law behavior as a function of frequency, whose exponents depend only slightly on voltage. Finally, the differential conductance in the Kondo regime shows a peculiar maximum at finite voltages, whose height, however, is below the accuracy level.
The effect of magnetic impurities on the ballistic conductance of nanocontacts is, as suggested in recent work, amenable to ab initio study cite{naturemat}. Our method proceeds via a conventional density functional calculation of spin and symmetry dependent electron scattering phase shifts, followed by the subsequent numerical renormalization group solution of Anderson models -- whose ingredients and parameters are chosen so as to reproduce these phase shifts. We apply this method to investigate the Kondo zero bias anomalies that would be caused in the ballistic conductance of perfect metallic (4,4) and (8,8) single wall carbon nanotubes, ideally connected to leads at the two ends, by externally adsorbed Co and Fe adatoms. The different spin and electronic structure of these impurities are predicted to lead to a variety of Kondo temperatures, generally well below 10 K, and to interference between channels leading to Fano-like conductance minima at zero bias.
We calculate the conductance through a single quantum dot coupled to metallic leads, modeled by the spin 1/2 Anderson model. We adopt the finite-U extension of the noncrossing approximation method. Our results are in good agreement with exact numerical renormalization group results both in the high temperature and in the Kondo (low temperature) regime. Thanks to this approach, we were able to fit fairly well recently reported measurements by S. De Franceschi et al. in a quantum dot device. We show that, contrarily to what previously suggested, the conductance of this particular device can be understood within the spin-1/2 Anderson model, in which the effects of the multilevel structure of the dot are neglected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا