Do you want to publish a course? Click here

Standard complexes of matroids and lattice paths

55   0   0.0 ( 0 )
 Added by Raman Sanyal
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by Grobner basis theory for finite point configurations, we define and study the class of standard complexes associated to a matroid. Standard complexes are certain subcomplexes of the independence complex that are invariant under matroid duality. For the lexicographic term order, the standard complexes satisfy a deletion-contraction-type recurrence. We explicitly determine the lexicographic standard complexes for lattice path matroids using classical bijective combinatorics.



rate research

Read More

Assume that the vertices of a graph $G$ are always operational, but the edges of $G$ fail independently with probability $q in[0,1]$. The emph{all-terminal reliability} of $G$ is the probability that the resulting subgraph is connected. The all-terminal reliability can be formulated into a polynomial in $q$, and it was conjectured cite{BC1} that all the roots of (nonzero) reliability polynomials fall inside the closed unit disk. It has since been shown that there exist some connected graphs which have their reliability roots outside the closed unit disk, but these examples seem to be few and far between, and the roots are only barely outside the disk. In this paper we generalize the notion of reliability to simplicial complexes and matroids and investigate when, for small simplicial complexes and matroids, the roots fall inside the closed unit disk.
In this paper, we propose a notion of colored Motzkin paths and establish a bijection between the $n$-cell standard Young tableaux (SYT) of bounded height and the colored Motzkin paths of length $n$. This result not only gives a lattice path interpretation of the standard Young tableaux but also reveals an unexpected intrinsic relation between the set of SYTs with at most $2d+1$ rows and the set of SYTs with at most 2d rows.
Catalan numbers arise in many enumerative contexts as the counting sequence of combinatorial structures. In this work, we consider natural Markov chains on some of the realizations of the Catalan sequence. While our main result is in deriving an $O(n^2 log n)$ bound on the mixing time in $L_2$ (and hence total variation) distance for the random transposition chain on Dyck paths, we raise several open questions, including the optimality of the above bound. The novelty in our proof is in establishing a certain negative correlation property among random bases of lattice path matroids, including the so-called Catalan matroid which can be defined using Dyck paths.
131 - Jaeho Shin 2019
There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes realization of our combinatorial theory. A main theorem is that for n less than or equal to 9 a specific and general enough kind of matroid tilings in the hypersimplex Delta(3,n) extend to matroid subdivisions of Delta(3,n) with the bound n=9 sharp. As a straightforward application to realizable cases, we solve an open problem in algebraic geometry proposed in 2008.
Cycle polytopes of matroids have been introduced in combinatorial optimization as a generalization of important classes of polyhedral objects like cut polytopes and Eulerian subgraph polytopes associated to graphs. Here we start an algebraic and geometric investigation of these polytopes by studying their toric algebras, called cycle algebras, and their defining ideals. Several matroid operations are considered which determine faces of cycle polytopes that belong again to this class of polyhedral objects. As a key technique used in this paper, we study certain minors of given matroids which yield algebra retracts on the level of cycle algebras. In particular, that allows us to use a powerful algebraic machinery. As an application, we study highest possible degrees in minimal homogeneous systems of generators of defining ideals of cycle algebras as well as interesting cases of cut polytopes and Eulerian subgraph polytopes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا