In this paper, we propose a notion of colored Motzkin paths and establish a bijection between the $n$-cell standard Young tableaux (SYT) of bounded height and the colored Motzkin paths of length $n$. This result not only gives a lattice path interpretation of the standard Young tableaux but also reveals an unexpected intrinsic relation between the set of SYTs with at most $2d+1$ rows and the set of SYTs with at most 2d rows.
We show that J_n, the Stanley-Reisner ideal of the n-cycle, has a free resolution supported on the (n-3)-dimensional simplicial associahedron A_n. This resolution is not minimal for n > 5; in this case the Betti numbers of J_n are strictly smaller than the f-vector of A_n. We show that in fact the Betti numbers of J_n are in bijection with the number of standard Young tableaux of shape (d+1, 2, 1^{n-d-3}). This complements the fact that the number of (d-1)-dimensional faces of A_n are given by the number of standard Young tableaux of (super)shape (d+1, d+1, 1^{n-d-3}); a bijective proof of this result was first provided by Stanley. An application of discrete Morse theory yields a cellular resolution of J_n that we show is minimal at the first syzygy. We furthermore exhibit a simple involution on the set of associahedron tableaux with fixed points given by the Betti tableaux, suggesting a Morse matching and in particular a poset structure on these objects.
Let $mathcal{T}_3$ be the three-rowed strip. Recently Regev conjectured that the number of standard Young tableaux with $n-3$ entries in the skew three-rowed strip $mathcal{T}_3 / (2,1,0)$ is $m_{n-1}-m_{n-3}$, a difference of two Motzkin numbers. This conjecture, together with hundreds of similar identities, were derived automatically and proved rigorously by Zeilberger via his powerful program and WZ method. It appears that each one is a linear combination of Motzkin numbers with constant coefficients. In this paper we will introduce a simple bijection between Motzkin paths and standard Young tableaux with at most three rows. With this bijection we answer Zeilbergers question affirmatively that there is a uniform way to construct bijective proofs for all of those identites.
A {em Motzkin path} of length $n$ is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $mathbb{Z}timesmathbb{Z}$ consisting of horizontal-steps $(1, 0)$, up-steps $(1,1)$, and down-steps $(1,-1)$, which never passes below the x-axis. A {em $u$-segment {rm (resp.} $h$-segment {rm)}} of a Motzkin path is a maximum sequence of consecutive up-steps ({rm resp.} horizontal-steps). The present paper studies two kinds of statistics on Motzkin paths: number of $u$-segments and number of $h$-segments. The Lagrange inversion formula is utilized to represent the weighted generating function for the number of Motzkin paths according to the statistics as a sum of the partial Bell polynomials or the potential polynomials. As an application, a general framework for studying compositions are also provided.
This paper completely characterizes the standard Young tableaux that can be reconstructed from their sets or multisets of $1$-minors. In particular, any standard Young tableau with at least $5$ entries can be reconstructed from its set of $1$-minors.
We prove a quantitative version of the multi-colored Motzkin-Rabin theorem in the spirit of [BDWY12]: Let $V_1,ldots,V_n subset R^d$ be $n$ disjoint sets of points (of $n$ `colors). Suppose that for every $V_i$ and every point $v in V_i$ there are at least $delta |V_i|$ other points $u in V_i$ so that the line connecting $v$ and $u$ contains a third point of another color. Then the union of the points in all $n$ sets is contained in a subspace of dimension bounded by a function of $n$ and $delta$ alone.