Do you want to publish a course? Click here

Predictions with dynamic Bayesian predictive synthesis are exact minimax

311   0   0.0 ( 0 )
 Added by Kenichiro McAlinn
 Publication date 2019
  fields Economy
and research's language is English




Ask ChatGPT about the research

We analyze the combination of multiple predictive distributions for time series data when all forecasts are misspecified. We show that a specific dynamic form of Bayesian predictive synthesis -- a general and coherent Bayesian framework for ensemble methods -- produces exact minimax predictive densities with regard to Kullback-Leibler loss, providing theoretical support for finite sample predictive performance over existing ensemble methods. A simulation study that highlights this theoretical result is presented, showing that dynamic Bayesian predictive synthesis is superior to other ensemble methods using multiple metrics.



rate research

Read More

83 - David M. Kaplan 2016
Bayesian and frequentist criteria are fundamentally different, but often posterior and sampling distributions are asymptotically equivalent (e.g., Gaussian). For the corresponding limit experiment, we characterize the frequentist size of a certain Bayesian hypothesis test of (possibly nonlinear) inequalities. If the null hypothesis is that the (possibly infinite-dimensional) parameter lies in a certain half-space, then the Bayesian tests size is $alpha$; if the null hypothesis is a subset of a half-space, then size is above $alpha$ (sometimes strictly); and in other cases, size may be above, below, or equal to $alpha$. Two examples illustrate our results: testing stochastic dominance and testing curvature of a translog cost function.
This paper is about the ability and means to root-n consistently and efficiently estimate linear, mean square continuous functionals of a high dimensional, approximately sparse regression. Such objects include a wide variety of interesting parameters such as the covariance between two regression residuals, a coefficient of a partially linear model, an average derivative, and the average treatment effect. We give lower bounds on the convergence rate of estimators of such objects and find that these bounds are substantially larger than in a low dimensional, semiparametric setting. We also give automatic debiased machine learners that are $1/sqrt{n}$ consistent and asymptotically efficient under minimal conditions. These estimators use no cross-fitting or a special kind of cross-fitting to attain efficiency with faster than $n^{-1/4}$ convergence of the regression. This rate condition is substantially weaker than the product of convergence rates of two functions being faster than $1/sqrt{n},$ as required for many other debiased machine learners.
We discuss model and forecast combination in time series forecasting. A foundational Bayesian perspective based on agent opinion analysis theory defines a new framework for density forecast combination, and encompasses several existing forecast pooling methods. We develop a novel class of dynamic latent factor models for time series forecast synthesis; simulation-based computation enables implementation. These models can dynamically adapt to time-varying biases, miscalibration and inter-dependencies among multiple models or forecasters. A macroeconomic forecasting study highlights the dynamic relationships among synthesized forecast densities, as well as the potential for improved forecast accuracy at multiple horizons.
We develop a novel decouple-recouple dynamic predictive strategy and contribute to the literature on forecasting and economic decision making in a data-rich environment. Under this framework, clusters of predictors generate different latent states in the form of predictive densities that are later synthesized within an implied time-varying latent factor model. As a result, the latent inter-dependencies across predictive densities and biases are sequentially learned and corrected. Unlike sparse modeling and variable selection procedures, we do not assume a priori that there is a given subset of active predictors, which characterize the predictive density of a quantity of interest. We test our procedure by investigating the predictive content of a large set of financial ratios and macroeconomic variables on both the equity premium across different industries and the inflation rate in the U.S., two contexts of topical interest in finance and macroeconomics. We find that our predictive synthesis framework generates both statistically and economically significant out-of-sample benefits while maintaining interpretability of the forecasting variables. In addition, the main empirical results highlight that our proposed framework outperforms both LASSO-type shrinkage regressions, factor based dimension reduction, sequential variable selection, and equal-weighted linear pooling methodologies.
Conditional heteroscedastic (CH) models are routinely used to analyze financial datasets. The classical models such as ARCH-GARCH with time-invariant coefficients are often inadequate to describe frequent changes over time due to market variability. However we can achieve significantly better insight by considering the time-varying analogues of these models. In this paper, we propose a Bayesian approach to the estimation of such models and develop computationally efficient MCMC algorithm based on Hamiltonian Monte Carlo (HMC) sampling. We also established posterior contraction rates with increasing sample size in terms of the average Hellinger metric. The performance of our method is compared with frequentist estimates and estimates from the time constant analogues. To conclude the paper we obtain time-varying parameter estimates for some popular Forex (currency conversion rate) and stock market datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا