Do you want to publish a course? Click here

Frequentist size of Bayesian inequality tests

84   0   0.0 ( 0 )
 Added by David Kaplan
 Publication date 2016
  fields Economy
and research's language is English




Ask ChatGPT about the research

Bayesian and frequentist criteria are fundamentally different, but often posterior and sampling distributions are asymptotically equivalent (e.g., Gaussian). For the corresponding limit experiment, we characterize the frequentist size of a certain Bayesian hypothesis test of (possibly nonlinear) inequalities. If the null hypothesis is that the (possibly infinite-dimensional) parameter lies in a certain half-space, then the Bayesian tests size is $alpha$; if the null hypothesis is a subset of a half-space, then size is above $alpha$ (sometimes strictly); and in other cases, size may be above, below, or equal to $alpha$. Two examples illustrate our results: testing stochastic dominance and testing curvature of a translog cost function.



rate research

Read More

We analyze the combination of multiple predictive distributions for time series data when all forecasts are misspecified. We show that a specific dynamic form of Bayesian predictive synthesis -- a general and coherent Bayesian framework for ensemble methods -- produces exact minimax predictive densities with regard to Kullback-Leibler loss, providing theoretical support for finite sample predictive performance over existing ensemble methods. A simulation study that highlights this theoretical result is presented, showing that dynamic Bayesian predictive synthesis is superior to other ensemble methods using multiple metrics.
Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance of prior hierarchical specifications and draw connections to frequentist generalized ridge regression estimation. Specifically, we study the usefulness of continuous bimodal priors to model hypervariance parameters, and the effect scaling has on the posterior mean through its relationship to penalization. Several model selection strategies, some frequentist and some Bayesian in nature, are developed and studied theoretically. We demonstrate the importance of selective shrinkage for effective variable selection in terms of risk misclassification, and show this is achieved using the posterior from a rescaled spike and slab model. We also show how to verify a procedures ability to reduce model uncertainty in finite samples using a specialized forward selection strategy. Using this tool, we illustrate the effectiveness of rescaled spike and slab models in reducing model uncertainty.
Conditional heteroscedastic (CH) models are routinely used to analyze financial datasets. The classical models such as ARCH-GARCH with time-invariant coefficients are often inadequate to describe frequent changes over time due to market variability. However we can achieve significantly better insight by considering the time-varying analogues of these models. In this paper, we propose a Bayesian approach to the estimation of such models and develop computationally efficient MCMC algorithm based on Hamiltonian Monte Carlo (HMC) sampling. We also established posterior contraction rates with increasing sample size in terms of the average Hellinger metric. The performance of our method is compared with frequentist estimates and estimates from the time constant analogues. To conclude the paper we obtain time-varying parameter estimates for some popular Forex (currency conversion rate) and stock market datasets.
Many popular methods for building confidence intervals on causal effects under high-dimensional confounding require strong ultra-sparsity assumptions that may be difficult to validate in practice. To alleviate this difficulty, we here study a new method for average treatment effect estimation that yields asymptotically exact confidence intervals assuming that either the conditional response surface or the conditional probability of treatment allows for an ultra-sparse representation (but not necessarily both). This guarantee allows us to provide valid inference for average treatment effect in high dimensions under considerably more generality than available baselines. In addition, we showcase that our results are semi-parametrically efficient.
We investigate the frequentist coverage properties of Bayesian credible sets in a general, adaptive, nonparametric framework. It is well known that the construction of adaptive and honest confidence sets is not possible in general. To overcome this problem we introduce an extra assumption on the functional parameters, the so called general polished tail condition. We then show that under standard assumptions both the hierarchical and empirical Bayes methods results in honest confidence sets for sieve type of priors in general settings and we characterize their size. We apply the derived abstract results to various examples, including the nonparametric regression model, density estimation using exponential families of priors, density estimation using histogram priors and nonparametric classification model, for which we show that their size is near minimax adaptive with respect to the considered specific semi-metrics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا