No Arabic abstract
The propagation of focused wave groups in intermediate water depth and the shoaling zone is experimentally and numerically considered in this paper. The experiments are carried out in a two-dimensional wave flume and wave trains derived from Pierson-Moskowitz and JONSWAP spectrum are generated. The peak frequency does not change during the wave train propagation for Pierson-Moskowitz waves; however, a downshift of this peak is observed for JONSWAP waves. An energy partitioning is performed in order to track the spatial evolution of energy. Four energy regions are defined for each spectrum type. A nonlinear energy transfer between different spectral regions as the wave train propagates is demonstrated and quantified. Numerical simulations are conducted using a modified Boussinesq model for long waves in shallow waters of varying depth. Experimental results are in satisfactory agreement with numerical predictions, especially in the case of wave trains derived from JONSWAP spectrum.
In this study we investigated the capabilities of the mesh-free, Lagrangian particle method (Smoothed Particle Hydrodynamics, SPH) to simulate the detailed hydrodynamic processes generated by both spilling and plunging breaking waves within the surf zone. The weakly-compressible SPH code DualSPHysics was applied to simulate wave breaking over two distinct bathymetric profiles (a plane beach and fringing reef) and compared to experimental flume measurements of waves, flows, and mean water levels. Despite the simulations spanning very different wave breaking conditions (including an extreme case with violently plunging waves on an effectively dry reef slope), the model was able to reproduce a wide range of relevant surf zone hydrodynamic processes using a fixed set of numerical parameters. This included accurate predictions of the nonlinear evolution of wave shapes (e.g., asymmetry and skewness properties), rates of wave dissipation within the surf zone, and wave setup distributions. By using this mesh-free approach, the model was able to resolve the critical crest region within the breaking waves, which provided robust predictions of the wave-induced mass fluxes within the surf zone responsible for the undertow. Within this breaking crest region, the model results capture how the potential energy of the organized wave motion is initially converted to kinetic energy and then dissipated, which reproduces the distribution of wave forces responsible for wave setup generation across the surf zone. Overall, the results reveal how the mesh-free SPH approach can accurately reproduce the detailed wave breaking processes with comparable skill to state-of-the-art mesh-based Computational Fluid Dynamics (CFD) models, and thus can be applied to provide valuable new physical insight into surf zone dynamics.
Results of direct numerical simulation of isotropic turbulence of surface gravity waves in the framework of Hamiltonian equations are presented. For the first time simultaneous formation of both direct and inverse cascades was observed in the framework of primordial dynamical equations. At the same time, strong long waves background was developed. It was shown, that obtained Kolmogorov spectra are very sensitive to the presence of this condensate. Such situation has to be typical for experimental wave tanks, flumes, and small lakes.
To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynamical equations only wave modes are retained, and vortices and horizontally uniform vertical shears are excluded. Despite the simplifications, our simulations reproduce some key features of oceanic internal-wave spectra: accumulation of energy at near-inertial waves and realistic frequency and horizontal wavenumber dependencies. Furthermore, we provide evidence that formation of the energy spectra in the inertial subrange is dominated by scale-separated interactions with the near-inertial waves. These findings support oceanographers intuition that spectral energy density of internal waves is the result of predominantly wave-wave interactions.
Smoldering combustion plays an important role in forest and wildland fires. Fires from smoldering combustion can last for long periods of time, emit more pollutants, and be difficult to extinguish. This makes the study of smoldering in woody fuels and forest duff important. Cellulose, hemicellulose, and lignin are the major constituents in these type of fuels, in different proportions for different fuels. In this paper, we developed a 1-D model using the open-source software Gpyro to study the smoldering combustion of cellulose and hemicellulose mixtures. We first validated our simulations against experimentally obtained values of propagation speed for mixtures with fuel compositions including 100%, 75%, 50%, and 25% cellulose, with the remaining proportion of hemicellulose. Then, we studied the effects of varying fuel composition, density, and moisture content on smoldering combustion. We find that propagation speed of smoldering increased with decreases in density and increases in hemicellulose content, which we attribute to the role of oxygen diffusion. Propagation speed increased with moisture content for pure cellulose up to a certain limiting value, after which the propagation speed dropped by up to 70%. The mean peak temperature of smoldering increased with increases in hemicellulose content and density, and decreased with increasing moisture content.
The Peregrine breather, today widely regarded as a prototype for spatio-temporally localized rogue waves on the ocean caused by nonlinear focusing, is analyzed by direct numerical simulations based on two-phase Navier-Stokes equations. A finite-volume approach with a volume of fluid method is applied to study the Peregrine breather dynamics up to the initial stages of wave breaking. The comparison of the numerical results with laboratory experiments to validate the numerical approach shows very good agreement and suggests that the chosen method is an effective tool to study modulation instability and breather dynamics in water waves with high accuracy even up to the onset of wave breaking. The numerical results also indicate some previously unnoticed characteristics of the flow fields below the water surface of breathers, which might be of significance for short-term prediction of rogue waves. Recurrent wave breaking is also observed.