No Arabic abstract
In this study we investigated the capabilities of the mesh-free, Lagrangian particle method (Smoothed Particle Hydrodynamics, SPH) to simulate the detailed hydrodynamic processes generated by both spilling and plunging breaking waves within the surf zone. The weakly-compressible SPH code DualSPHysics was applied to simulate wave breaking over two distinct bathymetric profiles (a plane beach and fringing reef) and compared to experimental flume measurements of waves, flows, and mean water levels. Despite the simulations spanning very different wave breaking conditions (including an extreme case with violently plunging waves on an effectively dry reef slope), the model was able to reproduce a wide range of relevant surf zone hydrodynamic processes using a fixed set of numerical parameters. This included accurate predictions of the nonlinear evolution of wave shapes (e.g., asymmetry and skewness properties), rates of wave dissipation within the surf zone, and wave setup distributions. By using this mesh-free approach, the model was able to resolve the critical crest region within the breaking waves, which provided robust predictions of the wave-induced mass fluxes within the surf zone responsible for the undertow. Within this breaking crest region, the model results capture how the potential energy of the organized wave motion is initially converted to kinetic energy and then dissipated, which reproduces the distribution of wave forces responsible for wave setup generation across the surf zone. Overall, the results reveal how the mesh-free SPH approach can accurately reproduce the detailed wave breaking processes with comparable skill to state-of-the-art mesh-based Computational Fluid Dynamics (CFD) models, and thus can be applied to provide valuable new physical insight into surf zone dynamics.
The propagation of focused wave groups in intermediate water depth and the shoaling zone is experimentally and numerically considered in this paper. The experiments are carried out in a two-dimensional wave flume and wave trains derived from Pierson-Moskowitz and JONSWAP spectrum are generated. The peak frequency does not change during the wave train propagation for Pierson-Moskowitz waves; however, a downshift of this peak is observed for JONSWAP waves. An energy partitioning is performed in order to track the spatial evolution of energy. Four energy regions are defined for each spectrum type. A nonlinear energy transfer between different spectral regions as the wave train propagates is demonstrated and quantified. Numerical simulations are conducted using a modified Boussinesq model for long waves in shallow waters of varying depth. Experimental results are in satisfactory agreement with numerical predictions, especially in the case of wave trains derived from JONSWAP spectrum.
To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynamical equations only wave modes are retained, and vortices and horizontally uniform vertical shears are excluded. Despite the simplifications, our simulations reproduce some key features of oceanic internal-wave spectra: accumulation of energy at near-inertial waves and realistic frequency and horizontal wavenumber dependencies. Furthermore, we provide evidence that formation of the energy spectra in the inertial subrange is dominated by scale-separated interactions with the near-inertial waves. These findings support oceanographers intuition that spectral energy density of internal waves is the result of predominantly wave-wave interactions.
Results of direct numerical simulation of isotropic turbulence of surface gravity waves in the framework of Hamiltonian equations are presented. For the first time simultaneous formation of both direct and inverse cascades was observed in the framework of primordial dynamical equations. At the same time, strong long waves background was developed. It was shown, that obtained Kolmogorov spectra are very sensitive to the presence of this condensate. Such situation has to be typical for experimental wave tanks, flumes, and small lakes.
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multi-phase flows with accuracy and proper interphase management. The implementation was performed in the DualSPHysics code and validated for different canonical experiments, such as the single-phase and multiphase Poiseuille and Couette test cases. The method is accurate even for the multiphase case for which two phases are simulated. The shifting algorithm and the variable smoothing length formalism has been applied in the multiphase SPH model to improve the numerical results at the interphase even when it is highly deformed and non-linear effects become important. The obtained accuracy in the validation tests and the good interphase definition in the instability cases indicate an important improvement in the numerical results compared with single-phase and multiphase models where the shifting algorithm and the variable smoothing length formalism are not applied.
Viscoelastic flows occur widely, and numerical simulations of them are important for a range of industrial applications. Simulations of viscoelastic flows are more challenging than their Newtonian counterparts due to the presence of exponential gradients in polymeric stress fields, which can lead to catastrophic instabilities if not carefully handled. A key development to overcome this issue is the log-conformation formulation, which has been applied to a range of numerical methods, but not previously applied to Smoothed Particle Hydrodynamics (SPH). Here we present a 2D incompressible SPH algorithm for viscoelastic flows which, for the first time, incorporates a log-conformation formulation with an elasto-viscous stress splitting (EVSS) technique. The resulting scheme enables simulations of flows at high Weissenberg numbers (accurate up to Wi=85 for Poiseuille flow). The method is robust, and able to handle both internal and free-surface flows, and a range of linear and non-linear constitutive models. Several test cases are considerd included flow past a periodic array of cylinders and jet buckling. This presents a significant step change in capabilties compared to previous SPH algorithms for viscoelastic flows, and has the potential to simulate a wide range of new and challenging applications.