No Arabic abstract
We investigate a dark energy scenario in which a canonical scalar field $phi$ is coupled to the four velocity $u_{c}^{mu}$ of cold dark matter (CDM) through a derivative interaction $u_{c}^{mu} partial_{mu} phi$. The coupling is described by an interacting Lagrangian $f(X, Z)$, where $f$ depends on $X=-partial^{mu} phi partial_{mu} phi/2$ and $Z=u_{c}^{mu} partial_{mu} phi$. We derive stability conditions of linear scalar perturbations for the wavelength deep inside the Hubble radius and show that the effective CDM sound speed is close to 0 as in the standard uncoupled case, while the scalar-field propagation speed is affected by the interacting term $f$. Under a quasi-static approximation, we also obtain a general expression of the effective gravitational coupling felt by the CDM perturbation. We study the late-time cosmological dynamics for the coupling $f propto X^{(2-m)/2}Z^m$ and show that the gravitational coupling weaker than the Newton constant can be naturally realized for $m>0$ on scales relevant to the growth of large-scale structures. This allows the possibility for alleviating the tension of $sigma_8$ between low- and high-redshift measurements.
For a scalar field $phi$ coupled to cold dark matter (CDM), we provide a general framework for studying the background and perturbation dynamics on the isotropic cosmological background. The dark energy sector is described by a Horndeski Lagrangian with the speed of gravitational waves equivalent to that of light, whereas CDM is dealt as a perfect fluid characterized by the number density $n_c$ and four-velocity $u_c^mu$. For a very general interacting Lagrangian $f(n_c, phi, X, Z)$, where $f$ depends on $n_c$, $phi$, $X=-partial^{mu} phi partial_{mu} phi/2$, and $Z=u_c^{mu} partial_{mu} phi$, we derive the full linear perturbation equations of motion without fixing any gauge conditions. To realize a vanishing CDM sound speed for the successful structure formation, the interacting function needs to be of the form $f=-f_1(phi, X, Z)n_c+f_2(phi, X, Z)$. Employing a quasi-static approximation for the modes deep inside the sound horizon, we obtain analytic formulas for the effective gravitational couplings of CDM and baryon density perturbations as well as gravitational and weak lensing potentials. We apply our general formulas to several interacting theories and show that, in many cases, the CDM gravitational coupling around the quasi de-Sitter background can be smaller than the Newton constant $G$ due to a momentum transfer induced by the $Z$-dependence in $f_2$.
We study a coupled dark energy scenario in which a massive vector field $A_{mu}$ with broken $U(1)$ gauge symmetry interacts with the four-velocity $u_c^{mu}$ of cold dark matter (CDM) through the scalar product $Z=-u_c^{mu} A_{mu}$. This new coupling corresponds to the momentum transfer, so that the background vector and CDM continuity equations do not have explicit interacting terms analogous to the energy exchange. Hence the observational preference of uncoupled generalized Proca theories over the $Lambda$CDM model can be still maintained at the background level. Meanwhile, the same coupling strongly affects the evolution of cosmological perturbations. While the effective sound speed of CDM vanishes, the propagation speed and no-ghost condition of a longitudinal scalar of $A_{mu}$ and the CDM no-ghost condition are subject to nontrivial modifications by the $Z$ dependence in the Lagrangian. We propose a concrete dark energy model and show that the gravitational interaction on scales relevant to the linear growth of large-scale structures can be smaller than the Newton constant at low redshifts. This leads to the suppression of growth rates of both CDM and total matter density perturbations, so our model allows an interesting possibility for reducing the tension of matter density contrast $sigma_8$ between high- and low-redshift measurements.
We provide a general framework for studying the evolution of background and cosmological perturbations in the presence of a vector field $A_{mu}$ coupled to cold dark matter (CDM). We consider an interacting Lagrangian of the form $Q f(X) T_c$, where $Q$ is a coupling constant, $f$ is an arbitrary function of $X=-A_{mu}A^{mu}/2$, and $T_c$ is a trace of the CDM energy-momentum tensor. The matter coupling affects the no-ghost condition and sound speed of linear scalar perturbations deep inside the sound horizon, while those of tensor and vector perturbations are not subject to modifications. The existence of interactions also modifies the no-ghost condition of CDM density perturbations. We propose a concrete model of coupled vector dark energy with the tensor propagation speed equivalent to that of light. In comparison to the $Q=0$ case, we show that the decay of CDM to the vector field leads to the phantom dark energy equation of state $w_{rm DE}$ closer to $-1$. This alleviates the problem of observational incompatibility of uncoupled models in which $w_{rm DE}$ significantly deviates from $-1$. The maximum values of $w_{rm DE}$ reached during the matter era are bounded from the CDM no-ghost condition of future de Sitter solutions.
We argue that the $Lambda$CDM tensions of the Hubble-Lemaitre expansion rate $H_0$ and the clustering normalization $sigma_8$ can be eased, at least in principle, by considering an interaction between dark energy and dark matter in such a way to induce a small and positive early effective equation of state and a weaker gravity. For a dark energy scalar field $phi$ interacting with dark matter through an exchange of both energy and momentum, we derive a general form of the Lagrangian allowing for the presence of scaling solutions. In a subclass of such interacting theories, we show the existence of a scaling $phi$-matter-dominated-era ($phi$MDE) which can potentially alleviate the $H_0$ tension by generating an effective high-redshift equation of state. We also study the evolution of perturbations for a model with $phi$MDE followed by cosmic acceleration and find that the effective gravitational coupling relevant to the linear growth of large-scale structures can be smaller than the Newton gravitational constant $G$ at low redshifts. The momentum exchange between dark energy and dark matter plays a crucial role for realizing weak gravity, while the energy transfer is also required for the existence of $phi$MDE.
We show that the extended cosmological equation-of-state developed starting from a Chaplygin equation-of-state, recently applied to stellar modeling, is a viable dark energy model consistent with standard scalar potentials. Moreover we find a Lagrangian formulation based on a canonical scalar field with the appropriate self-interaction potential. Finally, we fit the scalar potential obtained numerically with concrete functions well studied in the literature. Our results may be of interest to model builders and particle physicists.