No Arabic abstract
For a scalar field $phi$ coupled to cold dark matter (CDM), we provide a general framework for studying the background and perturbation dynamics on the isotropic cosmological background. The dark energy sector is described by a Horndeski Lagrangian with the speed of gravitational waves equivalent to that of light, whereas CDM is dealt as a perfect fluid characterized by the number density $n_c$ and four-velocity $u_c^mu$. For a very general interacting Lagrangian $f(n_c, phi, X, Z)$, where $f$ depends on $n_c$, $phi$, $X=-partial^{mu} phi partial_{mu} phi/2$, and $Z=u_c^{mu} partial_{mu} phi$, we derive the full linear perturbation equations of motion without fixing any gauge conditions. To realize a vanishing CDM sound speed for the successful structure formation, the interacting function needs to be of the form $f=-f_1(phi, X, Z)n_c+f_2(phi, X, Z)$. Employing a quasi-static approximation for the modes deep inside the sound horizon, we obtain analytic formulas for the effective gravitational couplings of CDM and baryon density perturbations as well as gravitational and weak lensing potentials. We apply our general formulas to several interacting theories and show that, in many cases, the CDM gravitational coupling around the quasi de-Sitter background can be smaller than the Newton constant $G$ due to a momentum transfer induced by the $Z$-dependence in $f_2$.
In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) background by taking into account a matter perfect fluid. We derive the second-order action of scalar perturbations and resulting linear perturbation equations of motion without fixing any gauge conditions. Depending on physical problems at hand, most convenient gauges can be chosen to study the development of inhomogeneities in the presence of scalar and vector fields coupled to gravity. This versatile framework, which encompasses Horndeski and generalized Proca theories as special cases, is applicable to a wide variety of cosmological phenomena including nonsingular cosmology, inflation, and dark energy. By deriving conditions for the absence of ghost and Laplacian instabilities in several different gauges, we show that, unlike Horndeski theories, it is possible to evade no-go arguments for the absence of stable nonsingular bouncing/genesis solutions in both generalized Proca and SVT theories. We also apply our framework to the case in which scalar and vector fields are responsible for dark energy and find that the separation of observables relevant to the evolution of matter perturbations into tensor, vector, and scalar sectors is transparent in the unitary gauge. Unlike the flat gauge chosen in the literature, this result is convenient to confront SVT theories with observations associated with the cosmic growth history.
Phenomenological implications of the Mimetic Tensor-Vector-Scalar theory (MiTeVeS) are studied. The theory is an extension of the vector field model of mimetic dark matter, where a scalar field is also incorporated, and it is known to be free from ghost instability. In the absence of interactions between the scalar field and the vector field, the obtained cosmological solution corresponds to the General theory of Relativity (GR) with a minimally-coupled scalar field. However, including an interaction term between the scalar field and the vector field yields interesting dynamics. There is a shift symmetry for the scalar field with a flat potential, and the conserved Noether current, which is associated with the symmetry, behaves as a dark matter component. Consequently, the solution contains a cosmological constant, dark matter and a stiff matter fluid. Breaking the shift symmetry with a non-flat potential gives a natural interaction between dark energy and dark matter.
We investigate a dark energy scenario in which a canonical scalar field $phi$ is coupled to the four velocity $u_{c}^{mu}$ of cold dark matter (CDM) through a derivative interaction $u_{c}^{mu} partial_{mu} phi$. The coupling is described by an interacting Lagrangian $f(X, Z)$, where $f$ depends on $X=-partial^{mu} phi partial_{mu} phi/2$ and $Z=u_{c}^{mu} partial_{mu} phi$. We derive stability conditions of linear scalar perturbations for the wavelength deep inside the Hubble radius and show that the effective CDM sound speed is close to 0 as in the standard uncoupled case, while the scalar-field propagation speed is affected by the interacting term $f$. Under a quasi-static approximation, we also obtain a general expression of the effective gravitational coupling felt by the CDM perturbation. We study the late-time cosmological dynamics for the coupling $f propto X^{(2-m)/2}Z^m$ and show that the gravitational coupling weaker than the Newton constant can be naturally realized for $m>0$ on scales relevant to the growth of large-scale structures. This allows the possibility for alleviating the tension of $sigma_8$ between low- and high-redshift measurements.
We provide a general framework for studying the evolution of background and cosmological perturbations in the presence of a vector field $A_{mu}$ coupled to cold dark matter (CDM). We consider an interacting Lagrangian of the form $Q f(X) T_c$, where $Q$ is a coupling constant, $f$ is an arbitrary function of $X=-A_{mu}A^{mu}/2$, and $T_c$ is a trace of the CDM energy-momentum tensor. The matter coupling affects the no-ghost condition and sound speed of linear scalar perturbations deep inside the sound horizon, while those of tensor and vector perturbations are not subject to modifications. The existence of interactions also modifies the no-ghost condition of CDM density perturbations. We propose a concrete model of coupled vector dark energy with the tensor propagation speed equivalent to that of light. In comparison to the $Q=0$ case, we show that the decay of CDM to the vector field leads to the phantom dark energy equation of state $w_{rm DE}$ closer to $-1$. This alleviates the problem of observational incompatibility of uncoupled models in which $w_{rm DE}$ significantly deviates from $-1$. The maximum values of $w_{rm DE}$ reached during the matter era are bounded from the CDM no-ghost condition of future de Sitter solutions.
We study the phase space dynamics of cosmological models in the theoretical formulations of non-minimal metric-torsion couplings with a scalar field, and investigate in particular the critical points which yield stable solutions exhibiting cosmic acceleration driven by the {em dark energy}. The latter is defined in a way that it effectively has no direct interaction with the cosmological fluid, although in an equivalent scalar-tensor cosmological setup the scalar field interacts with the fluid (which we consider to be the pressureless dust). Determining the conditions for the existence of the stable critical points we check their physical viability, in both Einstein and Jordan frames. We also verify that in either of these frames, the evolution of the universe at the corresponding stable points matches with that given by the respective exact solutions we have found in an earlier work (arXiv: 1611.00654 [gr-qc]). We not only examine the regions of physical relevance for the trajectories in the phase space when the coupling parameter is varied, but also demonstrate the evolution profiles of the cosmological parameters of interest along fiducial trajectories in the effectively non-interacting scenarios, in both Einstein and Jordan frames.