Do you want to publish a course? Click here

Concepts for a deuterium-deuterium fusion reactor

76   0   0.0 ( 0 )
 Added by Roberto Onofrio
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the assumption that reactors based on deuterium-deuterium (D-D) fusion processes have to be necessarily developed after the successful completion of experiments and demonstrations for deuterium-tritium (D-T) fusion reactors. Two possible mechanisms for enhancing the reactivity are discussed. Hard tails in the energy distribution of the nuclei, through the so-called kappa-distribution, allow to boost the number of energetic nuclei available for fusion reactions. At higher temperatures than usually considered in D-T plasmas, vacuum polarization effects from real $e^+e^-$ and $mu^+mu^-$ pairs may provide further speed-up due to their contribution to screening of the Coulomb barrier. Furthermore, the energy collection system can benefit from the absence of the lithium blanket, both in simplicity and compactness. The usual thermal cycle can be bypassed with comparable efficiency levels using hadronic calorimetry and third-generation photovoltaic cells, possibly allowing to extend the use of fusion reactors to broader contexts, most notably maritime transport.



rate research

Read More

Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite well possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion, can there be refueled. To obtain a high thrust with a high specific impulse, favors the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of propulsion system in space would be very high, but it can also be developed on earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, rather than deuterium-tritium with a laser where 80% of the energy goes into neutrons, would also mean a breakthrough in fusion research, and therefore would justify the large development costs.
A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions $ d + t rightarrow n + alpha, d + {}^3H_e rightarrow p + alpha$, and $p + {}^{11}B rightarrow 3 alpha$ in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of $10^{22} - 10^{24}/rm{cm^2/s}$ for the plasma density $rho_t = 10^{15}/{rm cm^3}$ in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.
The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by big bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. (2015) used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on Chi-2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. (2016). Here we present a similar analysis for two d+d reactions, d(d,n)3He and d(d,p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.
132 - J. Karch , Yu. Sobolev , M. Beck 2013
The performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described. The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000 UCN per pulse outside of the biological shield at the experimental area. UCN densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L resulting in a storage efficiency of ~20%. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.
91 - F.Winterberg 2009
An attempt is made to explain the recently reported occurrence of ultradense deuterium as an isothermal transition of Rydberg matter into a high density phase by quantum mechanical exchange forces. It is conjectured that the transition is made possible by the formation of vortices in a Cooper pair electron fluid, separating the electrons from the deuterons, with the deuterons undergoing Bose-Einstein condensation in the core of the vortices. If such a state of deuterium should exist at the reported density of about 100,000 g/cm3, it would greatly facility the ignition of a thermonuclear detonation wave in pure deuterium, by placing the deuterium in a thin disc, to be ignited by a pulsed ultrafast laser or particle beam of modest energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا