Do you want to publish a course? Click here

Evidence of Potts-Nematic Superfluidity in a Hexagonal $sp^2$ Optical Lattice

79   0   0.0 ( 0 )
 Added by Xiaopeng Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

As in between liquid and crystal phases lies a nematic liquid crystal, which breaks rotation with preservation of translation symmetry, there is a nematic superfluid phase bridging a superfluid and a supersolid. The nematic order also emerges in interacting electrons and has been found to largely intertwine with multi-orbital correlation in high-temperature superconductivity, where Ising nematicity arises from a four-fold rotation symmetry $C_4$ broken down to $C_2$. Here we report an observation of a three-state ($mathbb{Z}_3$) quantum nematic order, dubbed Potts-nematicity, in a system of cold atoms loaded in an excited band of a hexagonal optical lattice described by an $sp^2$-orbital hybridized model. This Potts-nematic quantum state spontaneously breaks a three-fold rotation symmetry of the lattice, qualitatively distinct from the Ising nematicity. Our field theory analysis shows that the Potts-nematic order is stabilized by intricate renormalization effects enabled by strong inter-orbital mixing present in the hexagonal lattice. This discovery paves a way to investigate quantum vestigial orders in multi-orbital atomic superfluids.



rate research

Read More

We study attractively interacting fermions on a square lattice with dispersion relations exhibiting strong spin-dependent anisotropy. The resulting Fermi surface mismatch suppresses the s-wave BCS-type instability, clearing the way for unconventional types of order. Unbiased sampling of the Feynman diagrammatic series using Diagrammatic Monte Carlo methods reveals a rich phase diagram in the regime of intermediate coupling strength. Instead of a proposed Cooper-pair Bose metal phase [A. E. Feiguin and M. P. A. Fisher, Phys. Rev. Lett. 103, 025303 (2009)] we find an incommensurate density wave at strong anisotropy and two different p-wave superfluid states with unconventional symmetry at intermediate anisotropy.
147 - K. Sengupta 2021
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt. We begin with a brief summary of the possible experimental setup for generating the tilt. This is followed by a discussion of the effective low-energy model for these systems and its equilibrium phases. We also chart the relation of this model to the recently studied system of ultracold Rydberg atoms. Next, we discuss the non-equilibrium dynamics of this model for quench, ramp and periodic protocols with emphasis on the periodic drive which can be understood in terms of an analytic, albeit perturbative, Floquet Hamiltonian derived using Floquet perturbation theory (FPT). Finally, taking cue from the Floquet Hamiltonian of the periodically driven tilted boson chain, we discuss a spin model which exhibits Hilbert space fragmentation and exact dynamical freezing for wide range of initial states.
We study the superfluid behavior of a population imbalanced ultracold atomic Fermi gases with a short range attractive interaction in a one-dimensional (1D) optical lattice, using a pairing fluctuation theory. We show that, besides widespread pseudogap phenomena and intermediate temperature superfluidity, the superfluid phase is readily destroyed except in a limited region of the parameter space. We find a new mechanism for pair hopping, assisted by the excessive majority fermions, in the presence of continuum-lattice mixing, which leads to an unusual constant BEC asymptote for $T_c$ that is independent of pairing strength. In result, on the BEC side of unitarity, superfluidity, when it exists, may be strongly enhanced by population imbalance.
696 - Y. Kuno , K. Suzuki , I. Ichinose 2014
In this paper, we study an extended bosonic t-J model in an optical lattice, which describes two-component hard-core bosons with a nearest-neighbor (NN) pseudo-spin interaction, and also inter- and intra-species dipole-dipole interactions (DDI). In particular, we focus on the case in which two component hard-core bosons have anti-parallel polarized dipoles with each other. The global phase diagram is studied by means of the Gutzwiller variational method and also the quantum Monte-Carlo simulations (QMC). The both calculations show that a stripe solid order, besides a checkerboard one, appears as a result of the DDI. By the QMC, we find that two kinds of supersolid (SS) form, checkerboard SS and stripe SS, and we also verify the existence of some exotic phase between the stripe solid and checkerboard SS. Finally by the QMC, we study the t-J-like model, which was experimentally realized recently by A. de Paz et al. [Phys. Rev. Lett. {bf 111}, 185305 (2013)].
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا