No Arabic abstract
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt. We begin with a brief summary of the possible experimental setup for generating the tilt. This is followed by a discussion of the effective low-energy model for these systems and its equilibrium phases. We also chart the relation of this model to the recently studied system of ultracold Rydberg atoms. Next, we discuss the non-equilibrium dynamics of this model for quench, ramp and periodic protocols with emphasis on the periodic drive which can be understood in terms of an analytic, albeit perturbative, Floquet Hamiltonian derived using Floquet perturbation theory (FPT). Finally, taking cue from the Floquet Hamiltonian of the periodically driven tilted boson chain, we discuss a spin model which exhibits Hilbert space fragmentation and exact dynamical freezing for wide range of initial states.
The recent advances in creating nearly degenerate quantum dipolar gases in optical lattices are opening the doors for the exploration of equilibrium physics of quantum systems with anisotropic and long-range dipolar interactions. In this paper we study the zero- and finite-temperature phase diagrams of a system of hard-core dipolar bosons at half-filling, trapped in a two-dimensional optical lattice. The dipoles are aligned parallel to one another and tilted out of the optical lattice plane by means of an external electric field. At zero-temperature, the system is a superfluid at all tilt angles $theta$ provided that the strength of dipolar interaction is below a critical value $V_c(theta)$. Upon increasing the interaction strength while keeping $theta$ fixed, the superfluid phase is destabilized in favor of a checkerboard or a stripe solid depending on the tilt angle. We explore the nature of the phase transition between the two solid phases and find evidence of a micro-emulsion phase, following the Spivak-Kivelson scenario, separating these two solid phases. Additionally, we study the stability of these quantum phases against thermal fluctuations and find that the stripe solid is the most robust, making it the best candidate for experimental observation.
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac spectrum, which is relevant to graphene and high-$T_c$ superconductors.
We analyze topological properties of the one-dimensional Bose-Hubbard model with a quasiperiodic superlattice potential. This system can be realized in interacting ultracold bosons in optical lattice in the presence of an incommensurate superlattice potential. We first analyze the quasiperiodic superlattice made by the cosine function, which we call Harper-like Bose-Hubbard model. We compute the Chern number and observe a gap-closing behavior as the interaction strength $U$ is changed. Also, we discuss the bulk-edge correspondence in our system. Furthermore, we explore the phase diagram as a function of $U$ and a continuous deformation parameter $beta$ between the Harper-like model and another important quasiperiodic lattice, the Fibonacci model. We numerically confirm that the incommensurate charge density wave (ICDW) phase is topologically non-trivial and it is topologically equivalent in the whole ICDW region.
We study the interplay between large-spin, spin-orbit coupling, and superfluidity for bosons in a two dimensional optical lattice, focusing on the spin-1 spin-orbit coupled system recently realized at the Joint Quantum Institute [Campbell et. al., arXiv:1501.05984]. We find a rich quantum phase diagram, where, in addition to the conventional phases ---superfluid and insulator--- contained in the spin-$1$ Bose-Hubbard model, there are new lattice symmetry breaking phases. For weak interactions, the interplay between two length scales, the lattice momentum and the spin-orbit wave-vector induce a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone at a non-zero spin-orbit strength. This state is characterized by spin density wave order, which arises from the spin-$1$ nature of the system. Interactions suppress spin density wave order, and favor a superfluid textit{only} at the Brillouin zone edge. This state has spatially oscillating mean field order parameters, but a homogeneous density. We show that the spin density wave superfluid phase survives in a two dimensional harmonic trap, and thus establish that our results are directly applicable to experiments on $^{87}$Rb, $^7$Li, and $^{41}$K.